Non-Three-Colourable Common Graphs Exist

被引:32
|
作者
Hatami, Hamed [1 ]
Hladky, Jan [2 ,3 ]
Kral, Daniel [4 ]
Norine, Serguei [5 ]
Razborov, Alexander [6 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Charles Univ Prague, Fac Math & Phys, Dept Appl Math, Prague 11800, Czech Republic
[3] Univ Warwick, Dept Comp Sci, DIMAP, Coventry CV4 7AL, W Midlands, England
[4] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci, Prague 11800, Czech Republic
[5] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[6] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2012年 / 21卷 / 05期
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会; 英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
D O I
10.1017/S0963548312000107
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph H is called common if the sum of the number of copies of H in a graph G and the number in the complement of G is asymptotically minimized by taking G to be a random graph. Extending a conjecture of Erdos, Burr and Rosta conjectured that every graph is common. Thomason disproved both conjectures by showing that K-4 is not common. It is now known that in fact the common graphs are very rare. Answering a question of Sidorenko and of Jagger, St' ovicek and Thomason from 1996 we show that the 5-wheel is common. This provides the first example of a common graph that is not three-colourable.
引用
收藏
页码:734 / 742
页数:9
相关论文
共 50 条
  • [31] A construction of uniquely colourable graphs with equal colour class sizes
    Mohr, Samuel
    DISCRETE APPLIED MATHEMATICS, 2021, 303 : 122 - 126
  • [32] Structures and Chromaticity of Extremal 3-Colourable Sparse Graphs
    F.M. Dong
    K.M. Koh
    K.L. Teo
    Graphs and Combinatorics, 2001, 17 : 611 - 635
  • [33] Maximum h-colourable subgraph problem in balanced graphs
    Dahlhaus, E
    Manuel, PD
    Miller, M
    INFORMATION PROCESSING LETTERS, 1998, 65 (06) : 301 - 303
  • [34] The Complexity of 3-Colouring H-Colourable Graphs
    Krokhin, Andrei
    Oprsal, Jakub
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 1227 - 1239
  • [35] Face 2-colourable triangular embeddings of complete graphs
    Grannell, MJ
    Griggs, TS
    Siran, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (01) : 8 - 19
  • [36] Sparse H-Colourable Graphs of Bounded Maximum Degree
    Hossein Hajiabolhassan
    Xuding Zhu
    Graphs and Combinatorics, 2004, 20 : 65 - 71
  • [37] On small uniquely vertex-colourable graphs and Xu's conjecture
    Daneshgar, A
    Naserasr, R
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 93 - 108
  • [38] Graphs without a 3-Connected Subgraph are 4-Colourable
    Bonnet, Edouard
    Feghali, Carl
    Nguyen, Tung
    Scott, Alex
    Seymour, Paul
    Thomasse, Stephan
    Trotignon, Nicolas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (01):
  • [39] A family of universal pseudo-homogeneous G-colourable graphs
    Bonato, A
    DISCRETE MATHEMATICS, 2002, 247 (1-3) : 13 - 23
  • [40] Spanning 3-colourable subgraphs of small bandwidth in dense graphs
    Boettcher, Julia
    Schacht, Mathias
    Taraz, Anusch
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (04) : 752 - 777