Global Existence and Aggregation in a Keller-Segel Model with Fokker-Planck Diffusion

被引:124
|
作者
Yoon, Changwook [1 ]
Kim, Yong-Jung [2 ,3 ]
机构
[1] Yonsei Univ, Ctr Math Anal & Computat, Seoul 03722, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 70 Yuseong Daero, Daejeon 305811, South Korea
[3] Natl Inst Math Sci, 70 Yuseong Daero, Daejeon 305811, South Korea
基金
新加坡国家研究基金会;
关键词
Keller-Segel equations; Cell aggregation; Chemotaxis; Pattern formation; Fokker-Planck type diffusion; PARABOLIC CHEMOTAXIS SYSTEM; SEMILINEAR NEUMANN PROBLEM; LEAST-ENERGY SOLUTIONS; SINGULAR SENSITIVITY; BLOW-UP; BOUNDEDNESS;
D O I
10.1007/s10440-016-0089-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global existence and the instability of constant steady states are obtained together for a Keller-Segel type chemotactic aggregation model. Organisms are assumed to change their motility depending only on the chemical density but not on its gradient. However, the resulting model is closely related to the logarithmic model, u(t) = Delta(gamma(v)u) = del. (gamma(v))). u(t)=epsilon Delta v-v+u, where is the motility function. The global existence is shown for all chemosensitivity constant with a smallness assumption on . On the other hand constant steady states are shown to be unstable only if and is small. Furthermore, the threshold diffusivity is found that, if , any constant steady state is unstable and an aggregation pattern appears. Numerical simulations are given for radial cases.
引用
收藏
页码:101 / 123
页数:23
相关论文
共 50 条
  • [31] EXACT CRITERION FOR GLOBAL EXISTENCE AND BLOW UP TO A DEGENERATE KELLER-SEGEL SYSTEM
    Chen, Li
    Wang, Jinhuan
    DOCUMENTA MATHEMATICA, 2014, 19 : 103 - 120
  • [32] THE SCALAR KELLER-SEGEL MODEL ON NETWORKS
    Borsche, R.
    Goettlich, S.
    Klar, A.
    Schillen, P.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (02): : 221 - 247
  • [33] Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) : 1205 - 1235
  • [34] Global Boundedness in a Logarithmic Keller-Segel System
    Liu, Jinyang
    Tian, Boping
    Wang, Deqi
    Tang, Jiaxin
    Wu, Yujin
    MATHEMATICS, 2023, 11 (12)
  • [35] CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER-SEGEL MODEL
    Antonio Carrillo, Jose
    Hittmeir, Sabine
    Juengel, Ansgar
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (12):
  • [36] A Global Existence Result for a Keller-Segel Type System With Supercritical Initial Data
    Bartolucci D.
    Castorina D.
    Journal of Elliptic and Parabolic Equations, 2015, 1 (2) : 243 - 262
  • [37] TRAVELING WAVE AND AGGREGATION IN A FLUX-LIMITED KELLER-SEGEL MODEL
    Calvez, Vincent
    Perthame, Benoit
    Yasuda, Shugo
    KINETIC AND RELATED MODELS, 2018, 11 (04) : 891 - 909
  • [38] Instability in a generalized Keller-Segel model
    De Leenheer, Patrick
    Gopalakrishnan, Jay
    Zuhr, Erica
    JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 974 - 991
  • [39] Decay for a Keller-Segel Chemotaxis Model
    Payne, L. E.
    Straughan, B.
    STUDIES IN APPLIED MATHEMATICS, 2009, 123 (04) : 337 - 360