Global Existence and Aggregation in a Keller-Segel Model with Fokker-Planck Diffusion

被引:124
|
作者
Yoon, Changwook [1 ]
Kim, Yong-Jung [2 ,3 ]
机构
[1] Yonsei Univ, Ctr Math Anal & Computat, Seoul 03722, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 70 Yuseong Daero, Daejeon 305811, South Korea
[3] Natl Inst Math Sci, 70 Yuseong Daero, Daejeon 305811, South Korea
基金
新加坡国家研究基金会;
关键词
Keller-Segel equations; Cell aggregation; Chemotaxis; Pattern formation; Fokker-Planck type diffusion; PARABOLIC CHEMOTAXIS SYSTEM; SEMILINEAR NEUMANN PROBLEM; LEAST-ENERGY SOLUTIONS; SINGULAR SENSITIVITY; BLOW-UP; BOUNDEDNESS;
D O I
10.1007/s10440-016-0089-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global existence and the instability of constant steady states are obtained together for a Keller-Segel type chemotactic aggregation model. Organisms are assumed to change their motility depending only on the chemical density but not on its gradient. However, the resulting model is closely related to the logarithmic model, u(t) = Delta(gamma(v)u) = del. (gamma(v))). u(t)=epsilon Delta v-v+u, where is the motility function. The global existence is shown for all chemosensitivity constant with a smallness assumption on . On the other hand constant steady states are shown to be unstable only if and is small. Furthermore, the threshold diffusivity is found that, if , any constant steady state is unstable and an aggregation pattern appears. Numerical simulations are given for radial cases.
引用
收藏
页码:101 / 123
页数:23
相关论文
共 50 条
  • [11] Global existence for a nonlocal and nonlinear Fokker-Planck equation
    Dreyer, Wolfgang
    Huth, Robert
    Mielke, Alexander
    Rehberg, Joachim
    Winkler, Michael
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (02): : 293 - 315
  • [12] The stability of the Keller-Segel model
    Solis, FJ
    Cortés, JC
    Cardenas, OJ
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (9-10) : 973 - 979
  • [13] The fractional Keller-Segel model
    Escudero, Carlos
    NONLINEARITY, 2006, 19 (12) : 2909 - 2918
  • [14] ERROR ESTIMATES OF THE AGGREGATION -DIFFUSION SPLITTING ALGORITHMS FOR THE KELLER-SEGEL EQUATIONS
    Huang, Hui
    Liu, Jian-Guo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (10): : 3463 - 3478
  • [15] On global existence and blowup of solutions of Stochastic Keller-Segel type equation
    Misiats, Oleksandr
    Stanzhytskyi, Oleksandr
    Topaloglu, Ihsan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (01):
  • [16] Global existence and time decay estimate of solutions to the Keller-Segel system
    Tan, Zhong
    Zhou, Jianfeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (01) : 375 - 402
  • [17] Beyond the Keller-Segel model
    Romanczuk, P.
    Erdmann, U.
    Engel, H.
    Schimansky-Geier, L.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 157 : 61 - 77
  • [18] Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension
    Calvez, Vincent
    Corrias, Lucilla
    Ebde, Mohamed Abderrahman
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) : 561 - 584
  • [19] A fractional Fokker-Planck model for anomalous diffusion
    Anderson, Johan
    Kim, Eun-jin
    Moradi, Sara
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [20] Global Existence and Decay of Solution to Parabolic-Parabolic Keller-Segel Model in R~d
    钟文彬
    刘晓风
    JournalofDonghuaUniversity(EnglishEdition), 2022, 39 (01) : 85 - 94