Global Existence and Aggregation in a Keller-Segel Model with Fokker-Planck Diffusion

被引:124
|
作者
Yoon, Changwook [1 ]
Kim, Yong-Jung [2 ,3 ]
机构
[1] Yonsei Univ, Ctr Math Anal & Computat, Seoul 03722, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 70 Yuseong Daero, Daejeon 305811, South Korea
[3] Natl Inst Math Sci, 70 Yuseong Daero, Daejeon 305811, South Korea
基金
新加坡国家研究基金会;
关键词
Keller-Segel equations; Cell aggregation; Chemotaxis; Pattern formation; Fokker-Planck type diffusion; PARABOLIC CHEMOTAXIS SYSTEM; SEMILINEAR NEUMANN PROBLEM; LEAST-ENERGY SOLUTIONS; SINGULAR SENSITIVITY; BLOW-UP; BOUNDEDNESS;
D O I
10.1007/s10440-016-0089-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global existence and the instability of constant steady states are obtained together for a Keller-Segel type chemotactic aggregation model. Organisms are assumed to change their motility depending only on the chemical density but not on its gradient. However, the resulting model is closely related to the logarithmic model, u(t) = Delta(gamma(v)u) = del. (gamma(v))). u(t)=epsilon Delta v-v+u, where is the motility function. The global existence is shown for all chemosensitivity constant with a smallness assumption on . On the other hand constant steady states are shown to be unstable only if and is small. Furthermore, the threshold diffusivity is found that, if , any constant steady state is unstable and an aggregation pattern appears. Numerical simulations are given for radial cases.
引用
收藏
页码:101 / 123
页数:23
相关论文
共 50 条
  • [1] Global Existence and Aggregation in a Keller–Segel Model with Fokker–Planck Diffusion
    Changwook Yoon
    Yong-Jung Kim
    Acta Applicandae Mathematicae, 2017, 149 : 101 - 123
  • [2] ENERGY AND IMPLICIT DISCRETIZATION OF THE FOKKER-PLANCK AND KELLER-SEGEL TYPE EQUATIONS
    Almeida, Luis
    Bubba, Federica
    Perthame, Benoit
    Pouchol, Camille
    NETWORKS AND HETEROGENEOUS MEDIA, 2019, 14 (01) : 23 - 41
  • [3] JKO estimates in linear and non-linear Fokker-Planck equations, and Keller-Segel: LP and Sobolev bounds
    Di Marino, Simone
    Santambrogio, Filippo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (06): : 1485 - 1517
  • [4] Positivity-preserving and energy-dissipative finite difference schemes for the Fokker-Planck and Keller-Segel equations
    Hu, Jingwei
    Zhang, Xiangxiong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (03) : 1450 - 1484
  • [5] EXISTENCE OF SOLUTIONS OF THE HYPERBOLIC KELLER-SEGEL MODEL
    Perthame, Benoit
    Dalibard, Anne-Laure
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) : 2319 - 2335
  • [6] Global existence versus blow-up in a high dimensional Keller-Segel equation with degenerate diffusion and nonlocal aggregation
    Hong, Liang
    Wang, Wei
    Zheng, Sining
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 116 : 1 - 18
  • [7] Existence of global solution to a two-species Keller-Segel chemotaxis model
    Gao, Haiyan
    Fu, Shengmao
    Mohammed, Hassan
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (03)
  • [8] Existence and asymptotic properties of aerotaxis model with the Fokker-Planck type diffusion
    Lee, Jihoon
    Yoon, Changwook
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [9] Local and global existence of solutions of a Keller-Segel model coupled to the incompressible fluid equations
    Bae, Hantaek
    Kang, Kyungkeun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 333 : 407 - 435
  • [10] GLOBAL EXISTENCE OF SOLUTIONS TO A KELLER-SEGEL MODEL WITH LOGISTIC SOURCE IN R2
    Wang, Jinhuan
    Chen, Haomeng
    Zhuang, Mengdi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,