Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny

被引:33
|
作者
Mossel, Elchanan [1 ]
Vigoda, Eric
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
来源
ANNALS OF APPLIED PROBABILITY | 2006年 / 16卷 / 04期
基金
美国国家科学基金会;
关键词
Markov chain Monte Carlo; phylogeny; tree space;
D O I
10.1214/105051600000000538
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain Monte Carlo algorithms play a key role in the Bayesian approach to phylogenetic inference. In this paper, we present the first theoretical work analyzing the rate of convergence of several Markov chains widely used in phylogenetic inference. We analyze simple, realistic examples where these Markov chains fail to converge quickly. In particular, the data studied are generated from a pair of trees, under a standard evolutionary model. We prove that many of the popular Markov chains take exponentially long to reach their stationary distribution. Our construction is pertinent since it is well known that phylogenetic trees for genes may differ within a single organism. Our results shed a cautionary light on phylogenetic analysis using Bayesian inference and highlight future directions for potential theoretical work.
引用
收藏
页码:2215 / 2234
页数:20
相关论文
共 50 条
  • [41] Markov chain Monte Carlo exact inference for social networks
    McDonald, John W.
    Smith, Peter W. F.
    Forster, Jonathan J.
    SOCIAL NETWORKS, 2007, 29 (01) : 127 - 136
  • [42] Solar Bayesian Analysis Toolkit-A New Markov Chain Monte Carlo IDL Code for Bayesian Parameter Inference
    Anfinogentov, Sergey A.
    Nakariakov, Valery M.
    Pascoe, David J.
    Goddard, Christopher R.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 252 (01):
  • [43] MC2RAM: Markov Chain Monte Carlo Sampling in SRAM for Fast Bayesian Inference
    Shukla, Priyesh
    Shylendra, Ahish
    Tulabandhula, Theja
    Trivedi, Amit Ranjan
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [44] BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO
    Catanach, Thomas A.
    Vo, Huy D.
    Munsky, Brian
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (06) : 515 - 542
  • [45] Bayesian Inference with Markov Chain Monte Carlo-Based Numerical Approach for Input Model Updating
    Wu, Lingzi
    Ji, Wenying
    AbouRizk, Simaan M.
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2020, 34 (01)
  • [46] Gradient-Based Markov Chain Monte Carlo for Bayesian Inference With Non-differentiable Priors
    Goldman, Jacob Vorstrup
    Sell, Torben
    Singh, Sumeetpal Sidhu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2182 - 2193
  • [47] A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods
    O'Neill, PD
    MATHEMATICAL BIOSCIENCES, 2002, 180 : 103 - 114
  • [48] Bayesian inference along Markov Chain Monte Carlo approach for PWR core loading pattern optimization
    Haghighattalab, A.
    Minuchehr, A.
    Zolfaghari, A.
    Khoshahval, F.
    ANNALS OF NUCLEAR ENERGY, 2012, 50 : 150 - 157
  • [49] Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo
    Golightly, Andrew
    Wilkinson, Darren J.
    INTERFACE FOCUS, 2011, 1 (06) : 807 - 820
  • [50] Zero variance Markov chain Monte Carlo for Bayesian estimators
    Antonietta Mira
    Reza Solgi
    Daniele Imparato
    Statistics and Computing, 2013, 23 : 653 - 662