Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny

被引:33
|
作者
Mossel, Elchanan [1 ]
Vigoda, Eric
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
来源
ANNALS OF APPLIED PROBABILITY | 2006年 / 16卷 / 04期
基金
美国国家科学基金会;
关键词
Markov chain Monte Carlo; phylogeny; tree space;
D O I
10.1214/105051600000000538
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain Monte Carlo algorithms play a key role in the Bayesian approach to phylogenetic inference. In this paper, we present the first theoretical work analyzing the rate of convergence of several Markov chains widely used in phylogenetic inference. We analyze simple, realistic examples where these Markov chains fail to converge quickly. In particular, the data studied are generated from a pair of trees, under a standard evolutionary model. We prove that many of the popular Markov chains take exponentially long to reach their stationary distribution. Our construction is pertinent since it is well known that phylogenetic trees for genes may differ within a single organism. Our results shed a cautionary light on phylogenetic analysis using Bayesian inference and highlight future directions for potential theoretical work.
引用
收藏
页码:2215 / 2234
页数:20
相关论文
共 50 条
  • [31] Markov Chain Monte Carlo Simulation for Bayesian Hidden Markov Models
    Chan, Lay Guat
    Ibrahim, Adriana Irawati Nur Binti
    4TH INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2016), 2016, 1782
  • [32] Markov Chain Monte Carlo Algorithms: Theory and Practice
    Rosenthal, Jeffrey S.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 157 - 169
  • [33] A Markov chain perspective on adaptive Monte Carlo algorithms
    Desai, PY
    Glynn, PW
    WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 379 - 384
  • [34] Multiresolution genetic algorithms and Markov chain Monte Carlo
    Holloman, Christopher H.
    Lee, Herbert K. H.
    Higdon, Dave M.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (04) : 861 - 879
  • [35] Laplace expansions in Markov chain Monte Carlo algorithms
    Guthenneuc-Jouyaux, C
    Rousseau, J
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (01) : 75 - 94
  • [36] Markov chain Monte Carlo algorithms with sequential proposals
    Joonha Park
    Yves Atchadé
    Statistics and Computing, 2020, 30 : 1325 - 1345
  • [37] Markov chain Monte Carlo algorithms with sequential proposals
    Park, Joonha
    Atchade, Yves
    STATISTICS AND COMPUTING, 2020, 30 (05) : 1325 - 1345
  • [38] Predictive Inference Based on Markov Chain Monte Carlo Output
    Krueger, Fabian
    Lerch, Sebastian
    Thorarinsdottir, Thordis
    Gneiting, Tilmann
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (02) : 274 - 301
  • [39] Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
    Salimans, Tim
    Kingma, Diederik P.
    Welling, Max
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1218 - 1226
  • [40] Tree Bridging Markov Chain Monte Carlo for Ancestral Inference
    Heine, K.
    Beskos, A.
    De Iorio, M.
    Jasra, A.
    HUMAN HEREDITY, 2015, 80 (03) : 113 - 113