Complexity of proper prefix-convex regular languages

被引:2
|
作者
Brzozowski, Janusz A. [1 ]
Sinnamon, Corwin [1 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Atom; Most complex; Prefix-convex; Proper; Quotient complexity; Regular language; State complexity; Syntactic semigroup;
D O I
10.1016/j.tcs.2018.07.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A language L over an alphabet E is prefix-convex if, for any words x, y, z is an element of Sigma*, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages, which were studied elsewhere. Here we concentrate on prefix-convex languages that do not belong to any one of these classes; we call such languages proper. We exhibit most complex proper prefix-convex languages, which meet the bounds for the size of the syntactic semigroup, reversal, complexity of atoms, star, product, and boolean operations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 50 条
  • [41] Complexity in Union-Free Regular Languages
    Jiraskova, Galina
    Masopust, Tomas
    DEVELOPMENTS IN LANGUAGE THEORY, 2010, 6224 : 255 - +
  • [42] Complexity of suffix-free regular languages
    Brzozowski, Janusz A.
    Szykula, Marek
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 89 : 270 - 287
  • [43] State complexity of binary coded regular languages
    Geffert, Viliam
    Palisinova, Dominika
    Szabari, Alexander
    THEORETICAL COMPUTER SCIENCE, 2024, 990
  • [44] INTERSECTION AND UNION OF REGULAR LANGUAGES AND STATE COMPLEXITY
    BIRGET, JC
    INFORMATION PROCESSING LETTERS, 1992, 43 (04) : 185 - 190
  • [45] Complexity of bifix-free regular languages
    Ferens, Robert
    Szykula, Marek
    THEORETICAL COMPUTER SCIENCE, 2019, 787 : 14 - 27
  • [46] Complexity of aperiodicity for topological properties of regular ω-languages
    Selivanov, Victor L.
    Wagner, Klaus W.
    LOGIC AND THEORY OF ALGORITHMS, 2008, 5028 : 533 - +
  • [47] Complete classifications for the communication complexity of regular languages
    Tesson, P
    Thérien, D
    STACS 2003, PROCEEDINGS, 2003, 2607 : 62 - 73
  • [48] State complexity of concatenation and complementation of regular languages
    Jirásek, J
    Jirásková, G
    Szabari, A
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2005, 3317 : 178 - 189
  • [49] Incomplete operational transition complexity of regular languages
    Maia, Eva
    Moreira, Nelma
    Reis, Rogerio
    INFORMATION AND COMPUTATION, 2015, 244 : 1 - 22
  • [50] A Quantum Query Complexity Trichotomy for Regular Languages
    Aaronson, Scott
    Grier, Daniel
    Schaeffer, Luke
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 942 - 965