Complexity of proper prefix-convex regular languages

被引:2
|
作者
Brzozowski, Janusz A. [1 ]
Sinnamon, Corwin [1 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Atom; Most complex; Prefix-convex; Proper; Quotient complexity; Regular language; State complexity; Syntactic semigroup;
D O I
10.1016/j.tcs.2018.07.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A language L over an alphabet E is prefix-convex if, for any words x, y, z is an element of Sigma*, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages, which were studied elsewhere. Here we concentrate on prefix-convex languages that do not belong to any one of these classes; we call such languages proper. We exhibit most complex proper prefix-convex languages, which meet the bounds for the size of the syntactic semigroup, reversal, complexity of atoms, star, product, and boolean operations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 50 条
  • [21] Prefix-free regular languages and pattern matching
    Han, Yo-Sub
    Wang, Yajun
    Wood, Derick
    THEORETICAL COMPUTER SCIENCE, 2007, 389 (1-2) : 307 - 317
  • [22] Kleene Closure on Regular and Prefix-Free Languages
    Jiraskova, Galina
    Palmovsky, Matus
    Sebej, Juraj
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, CIAA 2014, 2014, 8587 : 226 - 237
  • [23] Equality sets of prefix morphisms and regular star languages
    Halava, V
    Harju, T
    Latteux, M
    INFORMATION PROCESSING LETTERS, 2005, 94 (04) : 151 - 154
  • [24] Non-regular Maximal Prefix-Free Subsets of Regular Languages
    Jirasek, Jozef, Jr.
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 229 - 242
  • [25] A pumping lemma for regular closure of prefix-free languages
    Koga, Toshihiro
    INFORMATION AND COMPUTATION, 2022, 289
  • [26] Nondeterministic complexity in subclasses of convex languages
    Hospodar, Michal
    Jiraskova, Galina
    Mlynarcik, Peter
    THEORETICAL COMPUTER SCIENCE, 2019, 787 : 89 - 110
  • [27] Ordering regular languages and automata: Complexity
    D'Agostino, Giovanna
    Martincigh, Davide
    Policriti, Alberto
    THEORETICAL COMPUTER SCIENCE, 2023, 949
  • [28] On the state complexity of reversals of regular languages
    Salomaa, A
    Wood, D
    Yu, S
    THEORETICAL COMPUTER SCIENCE, 2004, 320 (2-3) : 315 - 329
  • [29] Concatenation of Regular Languages and Descriptional Complexity
    Jiraskova, Galina
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2009, 5675 : 203 - 214
  • [30] Complexity of topological properties of regular ω-languages
    Selivanov, Victor L.
    Wagner, Klaus W.
    FUNDAMENTA INFORMATICAE, 2008, 83 (1-2) : 197 - 217