Complexity of proper prefix-convex regular languages

被引:2
|
作者
Brzozowski, Janusz A. [1 ]
Sinnamon, Corwin [1 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Atom; Most complex; Prefix-convex; Proper; Quotient complexity; Regular language; State complexity; Syntactic semigroup;
D O I
10.1016/j.tcs.2018.07.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A language L over an alphabet E is prefix-convex if, for any words x, y, z is an element of Sigma*, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages, which were studied elsewhere. Here we concentrate on prefix-convex languages that do not belong to any one of these classes; we call such languages proper. We exhibit most complex proper prefix-convex languages, which meet the bounds for the size of the syntactic semigroup, reversal, complexity of atoms, star, product, and boolean operations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 50 条
  • [1] Complexity of Proper Suffix-Convex Regular Languages
    Sinnamon, Corwin
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, CIAA 2018, 2018, 10977 : 324 - 338
  • [2] Complexity in Prefix-Free Regular Languages
    Jiraskova, Galina
    Krausova, Monika
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (31): : 197 - 204
  • [3] State Complexity of Combined Operations for Prefix-Free Regular Languages
    Han, Yo-Sub
    Salomaa, Kai
    Yu, Sheng
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2009, 5457 : 398 - +
  • [4] State Complexity of Prefix, Suffix, Bifix and Infix Operators on Regular Languages
    Pribavkina, Elena V.
    Rodaro, Emanuele
    DEVELOPMENTS IN LANGUAGE THEORY, 2010, 6224 : 376 - +
  • [5] Nondeterministic State Complexity of Basic Operations for Prefix-Free Regular Languages
    Han, Yo-Sub
    Salomaa, Kai
    Wood, Derick
    FUNDAMENTA INFORMATICAE, 2009, 90 (1-2) : 93 - 106
  • [6] Regular Languages meet Prefix Sorting
    Alanko, Jarno
    D'Agostino, Giovanna
    Policriti, Alberto
    Prezza, Nicola
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 911 - 930
  • [7] Prefix Distance Between Regular Languages
    Ng, Timothy
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2016, 9705 : 224 - 235
  • [8] Regular Languages meet Prefix Sorting
    Alanko, Jarno
    D'Agostino, Giovanna
    Policriti, Alberto
    Prezza, Nicola
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 911 - 930
  • [9] Complexity in Convex Languages
    Brzozowski, Janusz
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2010, 6031 : 1 - 15
  • [10] Parameterized Prefix Distance between Regular Languages
    Kutrib, Martin
    Meckel, Katja
    Wendlandt, Matthias
    SOFSEM 2014: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2014, 8327 : 419 - 430