New characterizations of Besov and Triebel-Lizorkin spaces over spaces of homogeneous type

被引:3
|
作者
Han, Yanchang [1 ]
Xu, Yanbo
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[3] Huaihai Inst Technol, Dept Math & Phys, Jiangsu 222005, Peoples R China
基金
中国国家自然科学基金;
关键词
T1; theorem; Besov and Triebel-Lizorkin spaces; Calderon reproducing formula; Plancherel-Polya inequalities;
D O I
10.1016/j.jmaa.2006.01.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the Tl theorem for the Besov and Triebel-Lizorkin spaces, we give new characterizations of Besov and Triebel-Lizorkin spaces with minimum regularity and cancellation conditions over spaces of homogeneous type. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 50 条
  • [41] New properties of Besov and Triebel-Lizorkin spaces on RD-spaces
    Dachun Yang
    Yuan Zhou
    Manuscripta Mathematica, 2011, 134 : 59 - 90
  • [42] Some new Besov and Triebel-Lizorkin spaces associated with para-accretive functions on spaces of homogeneous type
    Deng, Dongguo
    Yang, Dachun
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 80 : 229 - 262
  • [43] New Herz Type Besov and Triebel-Lizorkin Spaces with Variable Exponents
    Dong, Baohua
    Xu, Jingshi
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [44] Pointwise Characterizations of Besov and Triebel-Lizorkin Spaces with Generalized Smoothness and Their Applications
    Li, Zi Wei
    Yang, Da Chun
    Yuan, Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (04) : 623 - 661
  • [45] POINTWISE CHARACTERIZATIONS OF BESOV AND TRIEBEL-LIZORKIN SPACES IN TERMS OF AVERAGES ON BALLS
    Yang, Dachun
    Yuan, Wen
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) : 7631 - 7655
  • [46] Quarklet characterizations for Triebel-Lizorkin spaces
    Hovemann, Marc
    Dahlke, Stephan
    JOURNAL OF APPROXIMATION THEORY, 2023, 295
  • [47] Geometric Characterizations of Embedding Theorems: For Sobolev, Besov, and Triebel-Lizorkin Spaces on Spaces of Homogeneous Type-via Orthonormal Wavelets
    Han, Yanchang
    Han, Yongsheng
    He, Ziyi
    Li, Ji
    Pereyra, Cristina
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (09) : 8947 - 8978
  • [48] Besov and Triebel-Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderon-Zygmund operators
    Wang, Fan
    Han, Yongsheng
    He, Ziyi
    Yang, Dachun
    DISSERTATIONES MATHEMATICAE, 2021, 565 : 1 - 113
  • [49] SOME CONVOLUTION INEQUALITIES IN REALIZED HOMOGENEOUS BESOV AND TRIEBEL-LIZORKIN SPACES
    Benallia, Mohamed
    Moussai, Madani
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2019, 106 (120): : 69 - 84
  • [50] Tb theorems for Triebel-Lizorkin spaces over special spaces of homogeneous type and their applications
    Yanchang Han
    Collectanea mathematica, 2008, 59 : 63 - 78