New properties of Besov and Triebel-Lizorkin spaces on RD-spaces

被引:3
|
作者
Dachun Yang
Yuan Zhou
机构
[1] Beijing Normal University,School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Ministry of Education
来源
Manuscripta Mathematica | 2011年 / 134卷
关键词
Primary 46E35; Secondary 42B30; 43A99;
D O I
暂无
中图分类号
学科分类号
摘要
An RD-space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal X}$$\end{document} is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal X}$$\end{document}. In this paper, the authors first give several equivalent characterizations of RD-spaces and show that the definitions of spaces of test functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal X}$$\end{document} are independent of the choice of the regularity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon\in (0,1)}$$\end{document}; as a result of this, the Besov and Triebel-Lizorkin spaces on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal X}$$\end{document} are also independent of the choice of the underlying distribution space. Then the authors characterize the norms of inhomogeneous Besov and Triebel-Lizorkin spaces by the norms of homogeneous Besov and Triebel-Lizorkin spaces together with the norm of local Hardy spaces in the sense of Goldberg. Also, the authors obtain the sharp locally integrability of elements in Besov and Triebel-Lizorkin spaces.
引用
收藏
页码:59 / 90
页数:31
相关论文
共 50 条
  • [1] New properties of Besov and Triebel-Lizorkin spaces on RD-spaces
    Yang, Dachun
    Zhou, Yuan
    MANUSCRIPTA MATHEMATICA, 2011, 134 (1-2) : 59 - 90
  • [2] A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces
    Mueller, Detlef
    Yang, Dachun
    FORUM MATHEMATICUM, 2009, 21 (02) : 259 - 298
  • [3] REAL INTERPOLATION FOR GRAND BESOV AND TRIEBEL-LIZORKIN SPACES ON RD-SPACES
    Jiang, Xiaojuan
    Yang, Dachun
    Yuan, Wen
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) : 509 - 529
  • [4] Embedding Theorem for In homogeneous Besov and Triebel-Lizorkin Spaces on RD-spaces
    Han, Yanchang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (04): : 757 - 773
  • [5] T1 THEOREM FOR INHOMOGENEOUS TRIEBEL-LIZORKIN AND BESOV SPACES ON RD-SPACES AND ITS APPLICATION
    Liao, Fanghui
    Liu, Zongguang
    Wang, Hongbin
    ADVANCES IN OPERATOR THEORY, 2018, 3 (03): : 522 - 537
  • [6] GENERALIZED BESOV SPACES AND TRIEBEL-LIZORKIN SPACES
    Chin-Cheng Lin
    AnalysisinTheoryandApplications, 2008, 24 (04) : 336 - 350
  • [7] New bases for Triebel-Lizorkin and Besov spaces
    Kyriazis, G
    Petrushev, P
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) : 749 - 776
  • [8] Variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 511 - 522
  • [9] Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces
    Han, YS
    Yang, DC
    STUDIA MATHEMATICA, 2003, 156 (01) : 67 - 97
  • [10] HERMITE BESOV AND TRIEBEL-LIZORKIN SPACES AND APPLICATIONS
    Ly, Fu Ken
    Naibo, Virginia
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 66 (01): : 243 - 263