A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams

被引:47
|
作者
Woellmer, Martin [1 ]
Al-Hames, Marc [1 ]
Eyben, Florian [1 ]
Schuller, Bjoern [1 ]
Rigoll, Gerhard [1 ]
机构
[1] Tech Univ Munich, Inst Human Machine Commun, D-80290 Munich, Germany
基金
芬兰科学院;
关键词
Dynamic time warping; Multimodal data fusion; Asynchronous hidden Markov model; PROGRAMMING ALGORITHM; RECOGNITION; SPEECH; INTERFACE; ONLINE; MODELS; FACE;
D O I
10.1016/j.neucom.2009.08.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To overcome the computational complexity of the asynchronous hidden Markov model (AHMM), we present a novel multidimensional dynamic time warping (DTW) algorithm for hybrid fusion of asynchronous data. We show that our newly introduced multidimensional DTW concept requires significantly less decoding time while providing the same data fusion flexibility as the AHMM. Thus, it can be applied in a wide range of real-time multimodal classification tasks. Optimally exploiting mutual information during decoding even if the input streams are not synchronous, our algorithm outperforms late and early fusion techniques in a challenging bimodal speech and gesture fusion experiment. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:366 / 380
页数:15
相关论文
共 50 条
  • [31] Special issue on multimodal data fusion for multidimensional signal processing
    Ren, Jinchang
    Han, Junwei
    Dalla Mura, Mauro
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2016, 27 (04) : 801 - 805
  • [32] A Pose Estimation Algorithm for Multimodal Data Fusion
    Chen, Ning
    Wu, Shaopeng
    Chen, Yupeng
    Wang, Zhanghua
    Zhang, Ziqian
    TRAITEMENT DU SIGNAL, 2022, 39 (06) : 1971 - 1979
  • [33] A Multimodal Fusion Plane Selection Algorithm for a Multidimensional Intelligent Interaction Pen
    Liu, Baizhou
    Feng, Zhiquan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT X, ICIC 2024, 2024, 14871 : 367 - 379
  • [34] Enabling Efficient and General Subpopulation Analytics in Multidimensional Data Streams
    Manousis, Antonis
    Cheng, Zhuo
    Ben Basat, Ran
    Liu, Zaoxing
    Sekar, Vyas
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 3249 - 3262
  • [35] Dynamic Tensor Linearization and Time Slicing for Efficient Factorization of Infinite Data Streams
    Soh, Yongseok
    Helal, Ahmed E.
    Checconi, Fabio
    Laukemann, Jan
    Tithi, Jesmin Jahan
    Ranadive, Teresa
    Petrini, Fabrizio
    Choi, Jee W.
    2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS, 2023, : 402 - 412
  • [36] ApproxCCA: An approximate correlation analysis algorithm for multidimensional data streams
    Wang Yongli
    Zhang Gongxuan
    Qian Jiang-Bo
    KNOWLEDGE-BASED SYSTEMS, 2011, 24 (07) : 952 - 962
  • [37] Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data
    Tomasi, G
    van den Berg, F
    Andersson, C
    JOURNAL OF CHEMOMETRICS, 2004, 18 (05) : 231 - 241
  • [38] Efficient Time Series Clustering by Minimizing Dynamic Time Warping Utilization
    Cai, Borui
    Huang, Guangyan
    Samadiani, Najmeh
    Li, Guanghui
    Chi, Chi-Hung
    IEEE ACCESS, 2021, 9 : 46589 - 46599
  • [39] Data Filtering Method for Intelligent Vehicle Shared Autonomy Based on a Dynamic Time Warping Algorithm
    Gao, Zhenhai
    Yu, Tong
    Sun, Tianjun
    Zhao, Haoyuan
    SENSORS, 2022, 22 (23)
  • [40] Dynamic time warping of palaeomagnetic secular variation data
    Hagen, Cedric J.
    Reilly, Brendan T.
    Stoner, Joseph S.
    Creveling, Jessica R.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (01) : 706 - 721