A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams

被引:47
|
作者
Woellmer, Martin [1 ]
Al-Hames, Marc [1 ]
Eyben, Florian [1 ]
Schuller, Bjoern [1 ]
Rigoll, Gerhard [1 ]
机构
[1] Tech Univ Munich, Inst Human Machine Commun, D-80290 Munich, Germany
基金
芬兰科学院;
关键词
Dynamic time warping; Multimodal data fusion; Asynchronous hidden Markov model; PROGRAMMING ALGORITHM; RECOGNITION; SPEECH; INTERFACE; ONLINE; MODELS; FACE;
D O I
10.1016/j.neucom.2009.08.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To overcome the computational complexity of the asynchronous hidden Markov model (AHMM), we present a novel multidimensional dynamic time warping (DTW) algorithm for hybrid fusion of asynchronous data. We show that our newly introduced multidimensional DTW concept requires significantly less decoding time while providing the same data fusion flexibility as the AHMM. Thus, it can be applied in a wide range of real-time multimodal classification tasks. Optimally exploiting mutual information during decoding even if the input streams are not synchronous, our algorithm outperforms late and early fusion techniques in a challenging bimodal speech and gesture fusion experiment. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:366 / 380
页数:15
相关论文
共 50 条
  • [21] Pattern discovery in data streams under the time warping distance
    Toyoda, Machiko
    Sakurai, Yasushi
    Ishikawa, Yoshiharu
    VLDB JOURNAL, 2013, 22 (03): : 295 - 318
  • [22] A local segmented dynamic time warping distance measure algorithm for time series data mining
    Dong, Xiao-Li
    Gu, Cheng-Kui
    Wang, Zheng-Ou
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 1247 - +
  • [23] Real-time algorithm for trend analysis of dynamic data streams
    State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
    Kongzhi yu Juece Control Decis, 2008, 10 (1182-1185+1191):
  • [24] Dynamic time warping of spectroscopic BATCH data
    Ramaker, HJ
    van Sprang, ENM
    Westerhuis, JA
    Smilde, AK
    ANALYTICA CHIMICA ACTA, 2003, 498 (1-2) : 133 - 153
  • [25] Pairwise dynamic time warping for event data
    Arribas-Gil, Ana
    Mueller, Hans-Georg
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 69 : 255 - 268
  • [26] An automated signal alignment algorithm based on dynamic time warping for capillary electrophoresis data
    Karabiber, Fethullah
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2013, 21 (03) : 851 - 863
  • [27] Multiple multidimensional sequence alignment using generalized Dynamic Time Warping
    Sanguansat, Parinya
    WSEAS Transactions on Mathematics, 2012, 11 (08) : 684 - 694
  • [28] Supervision of bioprocesses using a dynamic time warping algorithm
    Gollmer, K
    Posten, C
    CONTROL ENGINEERING PRACTICE, 1996, 4 (09) : 1287 - 1295
  • [29] Dynamic Time Warping Algorithm: A Hardware Realization in VHDL
    Tai, James Shueyen
    Li, Kin Fun
    Elmiligi, Haytham
    2013 INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS), 2013,
  • [30] Special issue on multimodal data fusion for multidimensional signal processing
    Jinchang Ren
    Junwei Han
    Mauro Dalla Mura
    Multidimensional Systems and Signal Processing, 2016, 27 : 801 - 805