DeepFloat: Resource-Efficient Dynamic Management of Vehicular Floating Content

被引:2
|
作者
Manzo, Gaetano [1 ,2 ]
Otalora, Sebastian [1 ]
Marsan, Marco Ajmone [3 ,4 ]
Braun, Torsten [2 ]
Hung Nguyen [5 ]
Rizzo, Gianluca [1 ]
机构
[1] Univ Appl Sci Western Switzerland, Delemont, Switzerland
[2] Univ Bern, Bern, Switzerland
[3] IMDEA Networks Inst, Leganes, Spain
[4] Politecn Torino, Turin, Italy
[5] Univ Adelaide, Adelaide, SA, Australia
基金
瑞士国家科学基金会;
关键词
D O I
10.1109/ITC31.2019.00015
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Opportunistic communications are expected to play a crucial role in enabling context-aware vehicular services. A widely investigated opportunistic communication paradigm for storing a piece of content probabilistically in a geographical area is Floating Content (FC). A key issue in the practical deployment of FC is how to tune content replication and caching in a way which achieves a target performance (in terms of the mean fraction of users possessing the content in a given region of space) while minimizing the use of bandwidth and host memory. Fully distributed, distance-based approaches prove highly inefficient, and may not meet the performance target, while centralized, model-based approaches do not perform well in realistic, inhomogeneous settings. In this work, we present a data-driven centralized approach to resource-efficient, QoS-aware dynamic management of FC. We propose a Deep Learning strategy, which employs a Convolutional Neural Network (CNN) to capture the relationships between patterns of users mobility, of content diffusion and replication, and FC performance in terms of resource utilization and of content availability within a given area. Numerical evaluations show the effectiveness of our approach in deriving strategies which efficiently modulate the FC operation in space and effectively adapt to mobility pattern changes over time.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 50 条
  • [21] The route to resource-efficient novel materials
    Krohns, S.
    Lunkenheimer, P.
    Meissner, S.
    Reller, A.
    Gleich, B.
    Rathgeber, A.
    Gaugler, T.
    Buhl, H. U.
    Sinclair, D. C.
    Loidl, A.
    NATURE MATERIALS, 2011, 10 (12) : 899 - 901
  • [22] Artificial biofilms for resource-efficient biotechnology
    Künstliche Biofilme für die ressourcenschonende Biotechnologie
    1600, Eugen G. Leuze Verlag (108):
  • [23] Resource-efficient inference for particle physics
    David Rousseau
    Nature Machine Intelligence, 2021, 3 : 656 - 657
  • [24] REM: Resource-Efficient Mining for Blockchains
    Zhang, Fan
    Eyal, Ittay
    Escriva, Robert
    Juels, Ari
    van Renesse, Robbert
    PROCEEDINGS OF THE 26TH USENIX SECURITY SYMPOSIUM (USENIX SECURITY '17), 2017, : 1427 - 1444
  • [25] Resource-Efficient Detection of Elephant Rumbles
    Jayasuriya, Namal
    Ranathunga, Tharindu
    Gunawardana, Kasun
    Silva, Chamath
    Kumarasinghe, Prabash
    Sayakkara, Asanka
    Keppitiyagama, Chamath
    De Zoysa, Kasun
    Hewage, Kasun
    Voigt, Thiemo
    PROCEEDINGS OF THE 15TH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS (SENSYS'17), 2017,
  • [26] RESOURCE-EFFICIENT WIRELESS RELAYING PROTOCOLS
    Lee, Kyungchun
    Hanzo, Lajos
    IEEE WIRELESS COMMUNICATIONS, 2010, 17 (02) : 66 - 72
  • [27] A resource-efficient flow monitoring system
    Cheng, Guang
    Gong, Jian
    IEEE COMMUNICATIONS LETTERS, 2007, 11 (06) : 558 - 560
  • [28] Resource-efficient production in the Process Industry
    Wandel zu einer ressourceneffizienten Produktion in der Prozessindustrie
    Gram, Markus (markus.gram@unileoben.ac.at), 1600, Springer (159):
  • [29] Sift: Resource-Efficient Consensus with RDMA
    Kazhamiaka, Mikhail
    Memon, Babar
    Kankanamge, Chathura
    Sahu, Siddhartha
    Rizvi, Sajjad
    Wong, Bernard
    Daudjee, Khuzaima
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON EMERGING NETWORKING EXPERIMENTS AND TECHNOLOGIES (CONEXT '19), 2019, : 260 - 271
  • [30] The development of a resource-efficient photovoltaic system
    Arranz, Pol
    Anzizu, Maria
    Pineau, Alexandre
    Marwede, Max
    den Boer, Emilia
    den Boer, Jan
    Cocciantelli, Jean-Michel
    Williams, Ian D.
    Obersteiner, Gudrun
    Scherhaufer, Silvia
    Vallve, Xavier
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WASTE AND RESOURCE MANAGEMENT, 2014, 167 (03) : 109 - 122