Optimal Quantum Tomography

被引:27
|
作者
Bisio, Alessandro [1 ]
Chiribella, Giulio [1 ]
D'Ariano, Giacomo Mauro [1 ]
Facchini, Stefano [1 ]
Perinotti, Paolo [1 ]
机构
[1] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy
关键词
Quantum information; quantum process tomography; quantum tomography; OPTICAL HOMODYNE TOMOGRAPHY; DENSITY-MATRIX; MECHANICAL STATE; RECONSTRUCTION; STATISTICS;
D O I
10.1109/JSTQE.2009.2029243
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The present short review article illustrates the latest theoretical developments on quantum tomography, regarding general optimization methods for both data processing and setup. The basic theoretical tool is the informationally complete measurement. The optimization theory for the setup is based on the new theoretical approach of quantum combs.
引用
收藏
页码:1646 / 1660
页数:15
相关论文
共 50 条
  • [11] Quantum process tomography via optimal design of experiments
    Gazit, Yonatan
    Ng, Hui Khoon
    Suzuki, Jun
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [12] Near-optimal quantum tomography: estimators and bounds
    Kueng, Richard
    Ferrie, Christopher
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [13] Progress toward optimal quantum tomography with unbalanced homodyning
    Teo, Y. S.
    Jeong, H.
    Sanchez-Soto, L. L.
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [14] Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography
    Nunn, J.
    Smith, B. J.
    Puentes, G.
    Walmsley, I. A.
    Lundeen, J. S.
    PHYSICAL REVIEW A, 2010, 81 (04)
  • [15] Nearly Optimal Measurement Scheduling for Partial Tomography of Quantum States
    Bonet-Monroig, Xavier
    Babbush, Ryan
    O'Brien, Thomas E.
    PHYSICAL REVIEW X, 2020, 10 (03):
  • [16] Optimal quantum detector tomography via linear regression estimation
    Xiao, Shuixin
    Wang, Yuanlong
    Dong, Daoyi
    Zhang, Jun
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4140 - 4145
  • [17] Optimal single-qubit tomography: Realization of locally optimal measurements on a quantum computer
    Li B.
    Conlon L.O.
    Lam P.K.
    Assad S.M.
    Physical Review A, 2023, 108 (03)
  • [18] OPTIMAL ESTIMATION OF QUANTUM PROCESSES USING INCOMPLETE INFORMATION: VARIATIONAL QUANTUM PROCESS TOMOGRAPHY
    Maciel, Thiago O.
    Vianna, Reinaldo O.
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (5-6) : 442 - 447
  • [19] Optimal quantum tomography with constrained measurements arising from unitary bases
    Chaturvedi, S.
    Ghosh, S.
    Parthasarathy, K. R.
    Singh, Ajit Iqbal
    REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (07)
  • [20] Optimal design of measurement settings for quantum-state-tomography experiments
    Li, Jun
    Huang, Shilin
    Luo, Zhihuang
    Li, Keren
    Lu, Dawei
    Zeng, Bei
    PHYSICAL REVIEW A, 2017, 96 (03)