Quantum process tomography via optimal design of experiments

被引:9
|
作者
Gazit, Yonatan [1 ]
Ng, Hui Khoon [1 ,2 ,3 ,4 ]
Suzuki, Jun [5 ]
机构
[1] Yale NUS Coll, Singapore 138527, Singapore
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Cote dAzur, Sorbonne Univ, MajuLab, Int Joint Res Unit UMI 3654,CNRS, Nice, France
[4] Nanyang Technol Univ, Natl Univ Singapore, Singapore, Singapore
[5] Univ Electrocommun, Grad Sch Informat & Engn, Tokyo 1828585, Japan
基金
新加坡国家研究基金会;
关键词
PARAMETER-ESTIMATION; FISHER INFORMATION; EFFICIENCY; GEOMETRY;
D O I
10.1103/PhysRevA.100.012350
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum process tomography, a primitive in many quantum information processing tasks, can be cast within the framework of the theory of design of experiments (DOE), a branch of classical statistics that deals with the relationship between inputs and outputs of an experimental setup. Such a link potentially gives access to the many ideas of the rich subject of classical DOE for use in quantum problems. The classical techniques from DOE, however, cannot be directly applied to the quantum process tomography due to the basic structural differences between the classical and quantum estimation problems. Here we properly formulate quantum process tomography as a DOE problem and examine several examples to illustrate the link and the methods. In particular, we discuss the common issue of nuisance parameters and point out interesting features in the quantum problem absent in the usual classical setting.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Optimal design of measurement settings for quantum-state-tomography experiments
    Li, Jun
    Huang, Shilin
    Luo, Zhihuang
    Li, Keren
    Lu, Dawei
    Zeng, Bei
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [2] Quantum-state estimation problem via optimal design of experiments
    Suzuki, Jun
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2021, 19 (08)
  • [3] A Two-Stage Solution to Quantum Process Tomography: Error Analysis and Optimal Design
    Xiao, Shuixin
    Wang, Yuanlong
    Zhang, Jun
    Dong, Daoyi
    Mooney, Gary J.
    Petersen, Ian R.
    Yonezawa, Hidehiro
    IEEE Transactions on Information Theory, 2025, 71 (03) : 1803 - 1823
  • [4] Experiments quantum homodyne tomography via machine learning
    Tiunov, E. S.
    Tiunova , V. V.
    Ulanov, A. E.
    Lvovsky, A., I
    Fedorov, A. K.
    OPTICA, 2020, 7 (05): : 448 - 454
  • [5] Optimal design of experiments via linear programming
    Burclova, Katarina
    Pazman, Andrej
    STATISTICAL PAPERS, 2016, 57 (04) : 893 - 910
  • [6] Optimal design of experiments via linear programming
    Katarína Burclová
    Andrej Pázman
    Statistical Papers, 2016, 57 : 893 - 910
  • [7] Quantum process tomography via multidimensional spectroscopy
    Zhou, Joel Yuen
    Arias, Dylan
    Eisele, Dorthe
    Steiner, Colby
    Krich, Jacob
    Bawendi, Moungi
    Nelson, Keith
    Aspuru-Guzik, Alan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [8] Identification of Quantum Closed Systems via the Quantum Process Tomography
    Zhou Weiwei
    Sophie, Schirmer G.
    Xie Hong-Wei
    Zhang Ming
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 7166 - 7171
  • [9] Optimal design of multifactor experiments via grid exploration
    Harman, Radoslav
    Filova, Lenka
    Rosa, Samuel
    STATISTICS AND COMPUTING, 2021, 31 (06)
  • [10] Optimal design of multifactor experiments via grid exploration
    Radoslav Harman
    Lenka Filová
    Samuel Rosa
    Statistics and Computing, 2021, 31