Quantum process tomography via optimal design of experiments

被引:9
|
作者
Gazit, Yonatan [1 ]
Ng, Hui Khoon [1 ,2 ,3 ,4 ]
Suzuki, Jun [5 ]
机构
[1] Yale NUS Coll, Singapore 138527, Singapore
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Cote dAzur, Sorbonne Univ, MajuLab, Int Joint Res Unit UMI 3654,CNRS, Nice, France
[4] Nanyang Technol Univ, Natl Univ Singapore, Singapore, Singapore
[5] Univ Electrocommun, Grad Sch Informat & Engn, Tokyo 1828585, Japan
基金
新加坡国家研究基金会;
关键词
PARAMETER-ESTIMATION; FISHER INFORMATION; EFFICIENCY; GEOMETRY;
D O I
10.1103/PhysRevA.100.012350
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum process tomography, a primitive in many quantum information processing tasks, can be cast within the framework of the theory of design of experiments (DOE), a branch of classical statistics that deals with the relationship between inputs and outputs of an experimental setup. Such a link potentially gives access to the many ideas of the rich subject of classical DOE for use in quantum problems. The classical techniques from DOE, however, cannot be directly applied to the quantum process tomography due to the basic structural differences between the classical and quantum estimation problems. Here we properly formulate quantum process tomography as a DOE problem and examine several examples to illustrate the link and the methods. In particular, we discuss the common issue of nuisance parameters and point out interesting features in the quantum problem absent in the usual classical setting.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] OPTIMAL EXPERIMENTS IN ELECTRICAL-IMPEDANCE TOMOGRAPHY
    PAULSON, K
    LIONHEART, W
    PIDCOCK, M
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1993, 12 (04) : 681 - 686
  • [42] Fourier Quantum Process Tomography
    Di Colandrea, Francesco
    Dehghan, Nazanin
    D'Errico, Alessio
    Karimi, Ebrahim
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [43] Multipass quantum process tomography
    Stanchev, Stancho G.
    Vitanov, Nikolay V.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Simplified quantum process tomography
    Branderhorst, M. P. A.
    Nunn, J.
    Walmsley, I. A.
    Kosut, R. L.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [45] Limitations of quantum process tomography
    Shalm, LK
    Mitchell, MW
    Steinberg, AM
    QUANTUM OPTICS AND APPLICATIONS IN COMPUTING AND COMMUNICATIONS II, 2005, 5631 : 60 - 67
  • [46] Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy
    Yuen-Zhou, Joel
    Krich, Jacob J.
    Mohseni, Masoud
    Aspuru-Guzik, Alan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (43) : 17615 - 17620
  • [47] Two-qubit decoherence mechanisms revealed via quantum process tomography
    Kofman, A. G.
    Korotkov, A. N.
    PHYSICAL REVIEW A, 2009, 80 (04)
  • [48] Quantum process tomography via completely positive and trace-preserving projection
    Knee, George C.
    Bolduc, Eliot
    Leach, Jonathan
    Gauger, Erik M.
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [49] Quantum process tomography of a Molmer-Sorensen gate via a global beam
    Tinkey, Holly N.
    Meier, Adam M.
    Clark, Craig R.
    Seck, Christopher M.
    Brown, Kenton R.
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (03)
  • [50] Quantum process tomography of the quantum Fourier transform
    Weinstein, YS
    Havel, TF
    Emerson, J
    Boulant, N
    Saraceno, M
    Lloyd, S
    Cory, DG
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (13): : 6117 - 6133