A novel multi-source information-fusion predictive framework based on deep neural networks for accuracy enhancement in stock market prediction

被引:45
|
作者
Nti, Isaac Kofi [1 ,2 ]
Adekoya, Adebayo Felix [1 ]
Weyori, Benjamin Asubam [1 ]
机构
[1] Univ Energy & Nat Resources, Dept Comp Sci & Informat, Sunyani, Ghana
[2] Sunyani Tech Univ, Dept Comp Sci, Sunyani, Ghana
关键词
Deep neural networks; Convolution neural network; Long short-term memory; Information fusion system; Stock market; Google trends; Algorithmic trading; FULLY CONVOLUTIONAL NETWORKS; SENTIMENT ANALYSIS; ENSEMBLE; MODEL;
D O I
10.1186/s40537-020-00400-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The stock market is very unstable and volatile due to several factors such as public sentiments, economic factors and more. Several Petabytes volumes of data are generated every second from different sources, which affect the stock market. A fair and efficient fusion of these data sources (factors) into intelligence is expected to offer better prediction accuracy on the stock market. However, integrating these factors from different data sources as one dataset for market analysis is seen as challenging because they come in a different format (numerical or text). In this study, we propose a novel multi-source information-fusion stock price prediction framework based on a hybrid deep neural network architecture (Convolution Neural Networks (CNN) and Long Short-Term Memory (LSTM)) named IKN-ConvLSTM. Precisely, we design a predictive framework to integrate stock-related information from six (6) heterogeneous sources. Secondly, we construct a base model using CNN, and random search algorithm as a feature selector to optimise our initial training parameters. Finally, a stacked LSTM network is fine-tuned by using the tuned parameter (features) from the base-model to enhance prediction accuracy. Our approach's emperical evaluation was carried out with stock data (January 3, 2017, to January 31, 2020) from the Ghana Stock Exchange (GSE). The results show a good prediction accuracy of 98.31%, specificity (0.9975), sensitivity (0.8939%) and F-score (0.9672) of the amalgamated dataset compared with the distinct dataset. Based on the study outcome, it can be concluded that efficient information fusion of different stock price indicators as a single data source for market prediction offer high prediction accuracy than individual data sources.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] A practical prediction method for grinding accuracy based on multi-source data fusion in manufacturing
    Wu, Haipeng
    Li, Zhihang
    Tang, Qian
    Zhang, Penghui
    Xia, Dong
    Zhao, Lianchang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (3-4): : 1407 - 1417
  • [22] Assessment method for water quality by multi-source information fusion based on BP neural networks and evidence theory
    Xu, LZ
    Ma, XP
    Huang, FC
    Wu, WF
    Shi, AY
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2005, 2 : 520 - 523
  • [23] Joint Deep Networks Based Multi-Source Feature Learning for QoS Prediction
    Xia, Youhao
    Ding, Ding
    Chang, Zhenhua
    Li, Fan
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (04) : 2314 - 2327
  • [24] Intelligent optimization of drill bits by combining multi-source data fusion and deep neural networks
    Wan, Youwei
    Liu, Xiangjun
    Xiong, Jian
    Liang, Lixi
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021,
  • [25] A model fusion method based on multi-source heterogeneous data for stock trading signal prediction
    Chen, Xi
    Hirota, Kaoru
    Dai, Yaping
    Jia, Zhiyang
    SOFT COMPUTING, 2023, 27 (10) : 6587 - 6611
  • [26] A model fusion method based on multi-source heterogeneous data for stock trading signal prediction
    Xi Chen
    Kaoru Hirota
    Yaping Dai
    Zhiyang Jia
    Soft Computing, 2023, 27 : 6587 - 6611
  • [27] Planetary gearbox fault diagnosis technique based on multi-source information deep fusion
    Chen R.-X.
    Huang X.
    Hu X.-L.
    Xu X.-Y.
    Huang Y.
    Zhu S.-K.
    Hu, Xiao-Lin (huxl0918@163.com), 1600, Nanjing University of Aeronautics an Astronautics (33): : 1094 - 1102
  • [28] Prediction method of rockburst in deep buried tunnel based on multi-source data fusion
    Zhang P.
    Ren S.
    Wu F.
    Liu Y.
    Chen X.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2024, 54 (03): : 707 - 716
  • [29] The intelligent fault identification method based on multi-source information fusion and deep learning
    Guo, Dashu
    Yang, Xiaoshuang
    Peng, Peng
    Zhu, Lei
    He, Handong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [30] Deep learning based multi-source heterogeneous information fusion framework for online monitoring of surface quality in milling process
    Wang, Xiaofeng
    Yan, Jihong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133