A model fusion method based on multi-source heterogeneous data for stock trading signal prediction

被引:2
|
作者
Chen, Xi [1 ,2 ]
Hirota, Kaoru [1 ]
Dai, Yaping [1 ]
Jia, Zhiyang [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350117, Peoples R China
关键词
Stock trading signal prediction; Model fusion; Multi-source heterogeneous data; Sentiment analysis; PIECEWISE-LINEAR REPRESENTATION; SUPPORT VECTOR MACHINE; DIRECTION;
D O I
10.1007/s00500-022-07714-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the prediction of turning points (TPs) of time series, the improved model of integrating piecewise linear representation and weighted support vector machine (IPLR-WSVM) has achieved good performance. However, due to the single data source and the limitation of algorithm, IPLR-WSVM has encountered challenges in profitability. In this paper, a model fusion method based on multi-source heterogeneous data and different learning algorithms is proposed for the prediction of TPs (MF-MSHD). Multi-source heterogeneous data include weighted unstructured and structured information with different granularities. RF, WSVM, BPNN, GBDT, and LSTM are selected to be the learning algorithms. The differences among meta-models are constructed by different inputs and algorithms as much as possible, and a model fusion rule is designed to determine the final TPs. Moreover, the TPs are generated based on the characteristics of individual stock. For sentiment analysis, a more accurate sentiment dictionary of stock market comments is established. Specifically, the fine-grained data is introduced to jointly determine the accurate trading moment. The prediction level of the proposal improves the accuracy and profitability, and also outperforms the composite indexes. Experimental results show that the profit rate of randomly selected stocks in MF-MSHD reaches 0.5172, while the highest value is 0.2841 in single meta-model and 0.0992 in buy and hold strategy, respectively. The other indicators including the accuracy are also modified. Compared with the increases of 0.1648, 0.4051, and 0.3397 in Shanghai Composite Index, Shenzhen Composite Index, and CSI 300 Index, MF-MSHD shows higher profitability in stock trading signal prediction.
引用
收藏
页码:6587 / 6611
页数:25
相关论文
共 50 条
  • [1] A model fusion method based on multi-source heterogeneous data for stock trading signal prediction
    Xi Chen
    Kaoru Hirota
    Yaping Dai
    Zhiyang Jia
    Soft Computing, 2023, 27 : 6587 - 6611
  • [2] Dynamic fusion of multi-source heterogeneous data using MOE mechanism for stock prediction
    Dong, Yuxin
    Wu, Zirui
    Hao, Yongtao
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [3] Multi-source heterogeneous data fusion model based on fuzzy mathematics
    Zeng, Qiao
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2023, 23 (04) : 2165 - 2178
  • [4] A Hybrid Recommendation Model Based on Fusion of Multi-Source Heterogeneous Data
    Ji Z.-Y.
    Pi H.-Y.
    Yao W.-N.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (01): : 126 - 132
  • [5] Multi-source Heterogeneous Data Fusion
    Zhang, Lili
    Xie, Yuxiang
    Luan Xidao
    Zhang, Xin
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD), 2018, : 47 - 51
  • [6] A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion
    Li, Xiaohan
    Wang, Jun
    Tan, Jinghua
    Ji, Shiyu
    Jia, Huading
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43753 - 43775
  • [7] A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion
    Xiaohan Li
    Jun Wang
    Jinghua Tan
    Shiyu Ji
    Huading Jia
    Multimedia Tools and Applications, 2022, 81 : 43753 - 43775
  • [8] Multi-source Heterogeneous Data Fusion Model Based on FC-SAE
    Zhang, Hong
    Jiang, Kun
    Cheng, Chuanqi
    Cao, Jie
    Zhang, Wenyue
    JOURNAL OF INTERNET TECHNOLOGY, 2022, 23 (07): : 1473 - 1481
  • [9] A novel LASSO-ATT-LSTM model of stock price prediction based on multi-source heterogeneous data
    Li, Huiru
    Hu, Yanrong
    Liu, Hongjiu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (06) : 10511 - 10521
  • [10] Traffic Accident Risk Prediction of Tunnel Based on Multi-Source Heterogeneous Data Fusion
    Wang, Yong
    Liu, Tongbin
    Lu, Yong
    Wan, Huawen
    Huang, Peng
    Deng, Fangming
    IEEE ACCESS, 2024, 12 : 18694 - 18702