Non-lacunary Gibbs Measures for Certain Fractal Repellers

被引:0
|
作者
Horita, Vanderlei [2 ]
Oliveira, Krerley [1 ]
机构
[1] Univ Fed Alagoas, Dept Matemat, BR-57072090 Maceio, Alagoas, Brazil
[2] IBILCE UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gibbs measures; Equilibrium states; Thermodynamical formalism; Non-uniform expansion; NONHYPERBOLIC REPELLERS; HAUSDORFF DIMENSION; EQUILIBRIUM STATES; ROBUST CLASSES; UNIQUENESS; EXISTENCE;
D O I
10.1007/s10955-009-9811-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study non-uniformly expanding repellers constructed as the limit sets for a non-uniformly expanding dynamical systems. We prove that given a Holder continuous potential phi satisfying a summability condition, there exists non-lacunary Gibbs measure for phi, with positive Lyapunov exponents and infinitely many hyperbolic times almost everywhere. Moreover, this non-lacunary Gibbs measure is an equilibrium measure for phi.
引用
收藏
页码:842 / 863
页数:22
相关论文
共 50 条
  • [1] Non-lacunary Gibbs Measures for Certain Fractal Repellers
    Vanderlei Horita
    Krerley Oliveira
    Journal of Statistical Physics, 2009, 136 : 842 - 863
  • [2] BOHR RECURRENCE AND DENSITY OF NON-LACUNARY SEMIGROUPS OF N
    Frantzikinakis, Nikos
    Host, Bernard
    Kra, Bryna
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) : 181 - 192
  • [3] Weak Gibbs measures for certain non-hyperbolic systems
    Yuri, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1495 - 1518
  • [4] HARMONIC, GIBBS AND HAUSDORFF MEASURES ON REPELLERS FOR HOLOMORPHIC MAPS .1.
    PRZYTYCKI, F
    URBANSKI, M
    ZDUNIK, A
    ANNALS OF MATHEMATICS, 1989, 130 (01) : 1 - 40
  • [5] HARMONIC, GIBBS AND HAUSDORFF MEASURES ON REPELLERS FOR HOLOMORPHIC MAPS .2.
    PRZYTYCKI, F
    URBANSKI, M
    ZDUNIK, A
    STUDIA MATHEMATICA, 1991, 97 (03) : 189 - 225
  • [6] Reactions of rhodium (II) acetate with non-lacunary Keggin and Dawson polyoxoanions and related catalytic studies
    Sokolov, Maxim N.
    Adonin, Sergey A.
    Peresypkina, Eugenia V.
    Abramov, Pavel A.
    Smolentsev, Anton I.
    Potemkin, Dmitry I.
    Snytnikov, Pavel V.
    Fedin, Vladimir P.
    INORGANICA CHIMICA ACTA, 2013, 394 : 656 - 662
  • [7] Multifractal spectra of certain random Gibbs measures
    Fan, AH
    Shieh, NR
    STATISTICS & PROBABILITY LETTERS, 2000, 47 (01) : 25 - 31
  • [8] A CONSTRUCTION OF GIBBS MEASURES ON CERTAIN CANTOR SETS
    MICHON, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 308 (11): : 315 - 318
  • [9] Spectral property of certain fractal measures
    Ding, Dao-Xin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (02) : 623 - 628
  • [10] SEVERAL SERIES OF NON-LACUNARY COMPOUNDS WITH FORMULAS L6B2C2X
    COLLIN, G
    FLAHAUT, J
    BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1972, (06): : 2207 - &