Non-lacunary Gibbs Measures for Certain Fractal Repellers

被引:0
|
作者
Horita, Vanderlei [2 ]
Oliveira, Krerley [1 ]
机构
[1] Univ Fed Alagoas, Dept Matemat, BR-57072090 Maceio, Alagoas, Brazil
[2] IBILCE UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gibbs measures; Equilibrium states; Thermodynamical formalism; Non-uniform expansion; NONHYPERBOLIC REPELLERS; HAUSDORFF DIMENSION; EQUILIBRIUM STATES; ROBUST CLASSES; UNIQUENESS; EXISTENCE;
D O I
10.1007/s10955-009-9811-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study non-uniformly expanding repellers constructed as the limit sets for a non-uniformly expanding dynamical systems. We prove that given a Holder continuous potential phi satisfying a summability condition, there exists non-lacunary Gibbs measure for phi, with positive Lyapunov exponents and infinitely many hyperbolic times almost everywhere. Moreover, this non-lacunary Gibbs measure is an equilibrium measure for phi.
引用
收藏
页码:842 / 863
页数:22
相关论文
共 50 条