Spectral property of certain fractal measures

被引:9
|
作者
Ding, Dao-Xin [1 ]
机构
[1] Hubei Univ Educ, Dept Math, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金;
关键词
Infinite convolution; Compatible pair; Spectral measure; Spectra; MOCK FOURIER-SERIES; CANTOR MEASURES; MORAN MEASURES; CONVOLUTIONS;
D O I
10.1016/j.jmaa.2017.02.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {0, a(j,) b(j)} = {0, 1, 2}(mod 3) be a sequence of digit sets in Z, and let {Ni = 3r(j)} be a sequence of integers bigger than 1. We call {f(j,d)(x) = N-j(-1)(x + d) : d is an element of {0,a(j),b(j)}}(j=0)(infinity) a Moran iterated function system, which is a generalisation of an IFS. We prove that the associated Moran measure is spectral. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:623 / 628
页数:6
相关论文
共 50 条
  • [1] SPECTRAL PROPERTY OF CERTAIN MORAN MEASURES IN Rn
    Ai, W. H.
    Peng, S. T.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (01) : 332 - 347
  • [2] SPECTRAL PROPERTY OF CERTAIN MORAN MEASURES WITH THREE-ELEMENT DIGIT SETS
    Fu, Xiu-Qun
    Dong, Xin-Han
    Liu, Zong-Sheng
    Wang, Zhi-Yong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)
  • [3] A general spectral gap property for measures
    Thomas H. Wolff
    Journal d’Analyse Mathématique, 2002, 88 : 7 - 25
  • [4] A general spectral gap property for measures
    Wolff, TH
    JOURNAL D ANALYSE MATHEMATIQUE, 2002, 88 (1): : 7 - 25
  • [5] CONVEX COMPACTNESS PROPERTY IN CERTAIN SPACES OF MEASURES
    KHURANA, SS
    OTHMAN, SI
    MATHEMATISCHE ANNALEN, 1987, 279 (02) : 345 - 348
  • [6] SPECTRAL ASYMPTOTICS OF FRACTAL MEASURES ON RIEMANNIAN-MANIFOLDS
    STRICHARTZ, RS
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (01) : 176 - 205
  • [7] Scalar spectral measures associated with an operator-fractal
    Jorgensen, Palle E. T.
    Kornelson, Keri A.
    Shuman, Karen L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
  • [8] Non-lacunary Gibbs Measures for Certain Fractal Repellers
    Vanderlei Horita
    Krerley Oliveira
    Journal of Statistical Physics, 2009, 136 : 842 - 863
  • [9] Non-lacunary Gibbs Measures for Certain Fractal Repellers
    Horita, Vanderlei
    Oliveira, Krerley
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (05) : 842 - 863
  • [10] Spectral property of Cantor measures with consecutive digits
    Dai, Xin-Rong
    He, Xing-Gang
    Lai, Chun-Kit
    ADVANCES IN MATHEMATICS, 2013, 242 : 187 - 208