Temporal convolutional networks for musical audio beat tracking

被引:34
|
作者
Davies, Matthew E. P. [1 ]
Boeck, Sebastian [2 ]
机构
[1] INESC TEC, Porto, Portugal
[2] Austrian Res Inst Artificial Intelligence OFAI, Vienna, Austria
关键词
Beat Tracking; Music Signal Processing; Convolutional Neural Networks;
D O I
10.23919/eusipco.2019.8902578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose the use of Temporal Convolutional Networks for audio-based beat tracking. By contrasting our convolutional approach with the current state-of-the-art recurrent approach using Bidirectional Long Short-Term Memory, we demonstrate three highly promising attributes of TCNs for music analysis, namely: i) they achieve state-of-the-art performance on a wide range of existing beat tracking datasets, ii) they are well suited to parallelisation and thus can be trained efficiently even on very large training data; and iii) they require a small number of weights.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] IMPROVED MUSICAL ONSET DETECTION WITH CONVOLUTIONAL NEURAL NETWORKS
    Schlueter, Jan
    Boeck, Sebastian
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [42] Abnormal ECG Beat Detection Based on Convolutional Neural Networks
    Ozdemir, Mehmet Akif
    Guren, Onan
    Karabiber Cura, Ozlem
    Akan, Aydin
    Onan, Aytug
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [43] LIPREADING USING TEMPORAL CONVOLUTIONAL NETWORKS
    Martinez, Brais
    Ma, Pingchuan
    Petridis, Stavros
    Pantic, Maja
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6319 - 6323
  • [44] The chronnectome of musical beat
    Toiviainen, Petri
    Burunat, Iballa
    Brattico, Elvira
    Vuust, Peter
    Alluri, Vinoo
    NEUROIMAGE, 2020, 216
  • [45] Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
    Blaszke, Maciej
    Korvel, Grazina
    Kostek, Bozena
    IEEE INTELLIGENT SYSTEMS, 2024, 39 (05) : 25 - 36
  • [46] Speeding up the tracking and updating of the convolutional residual tracking networks
    Yanqing Feng
    Lunwen Wang
    Multimedia Tools and Applications, 2022, 81 : 41343 - 41360
  • [47] Speeding up the tracking and updating of the convolutional residual tracking networks
    Feng, Yanqing
    Wang, Lunwen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 41343 - 41360
  • [48] Visual Tracking with Attentional Convolutional Siamese Networks
    Tan, Ke
    Wei, Zhenzhong
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 369 - 380
  • [49] Fast Visual Tracking Based on Convolutional Networks
    Huang, Ren-Jie
    Tsao, Chun-Yu
    Kuo, Yi-Pin
    Lai, Yi-Chung
    Liu, Chi Chung
    Tu, Zhe-Wei
    Wang, Jung-Hua
    Chang, Chung-Cheng
    SENSORS, 2018, 18 (08)
  • [50] Human Tracking Using Convolutional Neural Networks
    Fan, Jialue
    Xu, Wei
    Wu, Ying
    Gong, Yihong
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (10): : 1610 - 1623