Temporal convolutional networks for musical audio beat tracking

被引:34
|
作者
Davies, Matthew E. P. [1 ]
Boeck, Sebastian [2 ]
机构
[1] INESC TEC, Porto, Portugal
[2] Austrian Res Inst Artificial Intelligence OFAI, Vienna, Austria
关键词
Beat Tracking; Music Signal Processing; Convolutional Neural Networks;
D O I
10.23919/eusipco.2019.8902578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose the use of Temporal Convolutional Networks for audio-based beat tracking. By contrasting our convolutional approach with the current state-of-the-art recurrent approach using Bidirectional Long Short-Term Memory, we demonstrate three highly promising attributes of TCNs for music analysis, namely: i) they achieve state-of-the-art performance on a wide range of existing beat tracking datasets, ii) they are well suited to parallelisation and thus can be trained efficiently even on very large training data; and iii) they require a small number of weights.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] The Temporal Prediction of Stress in Speech and Its Relation to Musical Beat Perception
    Beier, Eleonora J.
    Ferreira, Fernanda
    FRONTIERS IN PSYCHOLOGY, 2018, 9
  • [32] Visual Tracking with Fully Convolutional Networks
    Wang, Lijun
    Ouyang, Wanli
    Wang, Xiaogang
    Lu, Huchuan
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3119 - 3127
  • [33] Online Tracking with Convolutional Neural Networks
    Liu, Xiaodong
    Zhou, Yue
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 208 - 216
  • [34] Audio classification using braided convolutional neural networks
    Sinha, Harsh
    Awasthi, Vinayak
    Ajmera, Pawan K.
    IET SIGNAL PROCESSING, 2020, 14 (07) : 448 - 454
  • [36] Convolutional Recurrent Neural Networks for Bird Audio Detection
    Cakir, Emre
    Adavanne, Sharath
    Parascandolo, Giambattista
    Drossos, Konstantinos
    Virtanen, Tuomas
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1744 - 1748
  • [37] SPATIAL AUDIO FEATURE DISCOVERY WITH CONVOLUTIONAL NEURAL NETWORKS
    Thuillier, Etienne
    Gamper, Hannes
    Tashev, Ivan J.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6797 - 6801
  • [38] Inside the Spectrogram: Convolutional Neural Networks in Audio Processing
    Doerfler, Monika
    Bammer, Roswitha
    Grill, Thomas
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 152 - 155
  • [39] CLASSIFICATION OF AUDIO SAMPLES BY CONVOLUTIONAL NETWORKS IN AUDIOBEEHIVE MONITORING
    Kulyukin, V. A.
    Mukherjee, S.
    Burkatovskaya, Yu B.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2018, (45): : 68 - 75
  • [40] Incremental Polyphonic Audio to Score Alignment using Beat Tracking for Singer Robots
    Otsuka, Takuma
    Murata, Kazumasa
    Nakadai, Kazuhiro
    Takahashi, Toni
    Komatani, Kazunori
    Ogata, Tetsuya
    Okuno, Hiroshi G.
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 2289 - 2296