General polytopal H(div)-conformal finite elements and their discretisation spaces

被引:1
|
作者
Abgrall, Remi [1 ]
Le Meledo, Elise [1 ]
Offner, Philipp [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
H(div)-conformity; finite elements; Raviart– Thomas elements; polytopal elements;
D O I
10.1051/m2an/2020048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a class of discretisation spaces and H(div)-conformal elements that can be built on any polytope. Bridging the flexibility of the Virtual Element spaces towards the element's shape with the divergence properties of the Raviart-Thomas elements on the boundaries, the designed frameworks offer a wide range of H(div)-conformal discretisations. As those elements are set up through degrees of freedom, their definitions are easily amenable to the properties the approximated quantities are wished to fulfil. Furthermore, we show that one straightforward restriction of this general setting share its properties with the classical Raviart-Thomas elements at each interface, for any order and any polytopal shape. Then, to close the introduction of those new elements by an example, we investigate the shape of the basis functions corresponding to particular elements in the two dimensional case.
引用
收藏
页码:S677 / S704
页数:28
相关论文
共 50 条
  • [41] OPTICAL SCALARS OF CONFORMAL SPACES IN GENERAL RELATIVITY
    KOLBOVSKII, YY
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1974, (01): : 31 - 34
  • [42] GENERAL CONFORMAL MOTIONS IN CONFORMALLY RELATED SPACES
    KATZIN, GH
    LEVINE, J
    TENSOR, 1966, 17 (03): : 249 - &
  • [43] Polytopal composite finite elements for modeling concrete fracture based on nonlocal damage models
    Huynh, Hai D.
    Natarajan, S.
    Nguyen-Xuan, H.
    Zhuang, Xiaoying
    COMPUTATIONAL MECHANICS, 2020, 66 (06) : 1257 - 1274
  • [44] Polytopal composite finite elements for modeling concrete fracture based on nonlocal damage models
    Hai D. Huynh
    S. Natarajan
    H. Nguyen-Xuan
    Xiaoying Zhuang
    Computational Mechanics, 2020, 66 : 1257 - 1274
  • [45] CONNECTION BETWEEN GRAD-DIV STABILIZED STOKES FINITE ELEMENTS AND DIVERGENCE-FREE STOKES FINITE ELEMENTS
    Neilan, Michael
    Zytoon, Ahmed
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (06) : 839 - 857
  • [46] An extended P1-nonconforming finite element method on general polytopal partitions
    Liu, Yujie
    Wang, Junping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
  • [47] A FAMILY OF H(div) FINITE ELEMENT APPROXIMATIONS ON POLYGONAL MESHES
    Talischi, Cameron
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A1067 - A1088
  • [48] Weak Galerkin finite element methods with and without stabilizers for H(div;ω)${\bf H}(\mbox{div}; \Omega )$-elliptic problems
    Kumar, Raman
    Deka, Bhupen
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (11):
  • [49] H (div, rot, Omega) spaces in a plane polygonal domain.
    Moussaoui, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (03): : 225 - 229
  • [50] Polynomial extension operators for H1, H(curl) and H(div) -: Spaces on a cube
    Costabel, M.
    Dauge, M.
    Demkowicz, L.
    MATHEMATICS OF COMPUTATION, 2008, 77 (264) : 1967 - 1999