General polytopal H(div)-conformal finite elements and their discretisation spaces

被引:1
|
作者
Abgrall, Remi [1 ]
Le Meledo, Elise [1 ]
Offner, Philipp [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
H(div)-conformity; finite elements; Raviart– Thomas elements; polytopal elements;
D O I
10.1051/m2an/2020048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a class of discretisation spaces and H(div)-conformal elements that can be built on any polytope. Bridging the flexibility of the Virtual Element spaces towards the element's shape with the divergence properties of the Raviart-Thomas elements on the boundaries, the designed frameworks offer a wide range of H(div)-conformal discretisations. As those elements are set up through degrees of freedom, their definitions are easily amenable to the properties the approximated quantities are wished to fulfil. Furthermore, we show that one straightforward restriction of this general setting share its properties with the classical Raviart-Thomas elements at each interface, for any order and any polytopal shape. Then, to close the introduction of those new elements by an example, we investigate the shape of the basis functions corresponding to particular elements in the two dimensional case.
引用
收藏
页码:S677 / S704
页数:28
相关论文
共 50 条
  • [21] FINITE ELEMENTS FOR DIV DIV CONFORMING SYMMETRIC TENSORS IN THREE DIMENSIONS
    Chen, Long
    Huang, Xuehai
    MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1107 - 1142
  • [22] FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div)ELEMENTS
    Junping Wang Division of Mathematical Sciences
    Journal of Computational Mathematics, 2008, 26 (03) : 410 - 436
  • [23] Regular decompositions for H(div) spaces
    Kolev, Tzanio
    Vassilevski, Panayot
    Computational Methods in Applied Mathematics, 2012, 12 (04) : 437 - 447
  • [24] Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations
    Lederer, Philip L.
    Schoeberl, Joachim
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 1832 - 1860
  • [25] Conformal Transformations on General (α,β)-Spaces
    Zhang, Xiaoling
    Zhang, Xuesong
    Wu, Mengke
    MATHEMATICS, 2023, 11 (15)
  • [27] Two-Dimensional H(div)-Conforming Finite Element Spaces with hp-Adaptivity
    Devloo, Philippe R. B.
    Farias, Agnaldo M.
    Gomes, Sonia M.
    de Siqueira, Denise
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 87 - 94
  • [28] Full H(div)-approximation of linear elasticity on quadrilateral meshes based on ABF finite elements
    Quinelato, Thiago O.
    Loula, Abimael F. D.
    Correa, Maicon R.
    Arbogast, Todd
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 120 - 142
  • [29] Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra
    Bergot, Morgane
    Durufle, Marc
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (05) : 1372 - 1414
  • [30] Fictitious domains, H(div) finite elements and Neumann condition: the inf-sup condition
    Joly, P
    Rhaouti, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1225 - 1230