Recovering the space source term for the fractional-diffusion equation with Caputo-Fabrizio derivative

被引:6
|
作者
Le Nhat Huynh [1 ]
Nguyen Hoang Luc [2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
Le Dinh Long [2 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Inst Space Sci, Magurele, Romania
关键词
Source function; Fractional diffusion equation; Caputo-Fabrizio fractional derivative; Regularization method; 26A33; 35B65; 35R11;
D O I
10.1186/s13660-021-02557-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the study of the source function for the Caputo-Fabrizio time fractional diffusion equation. This new definition of the fractional derivative has no singularity. In other words, the new derivative has a smooth kernel. Here, we investigate the existence of the source term. Through an example, we show that this problem is ill-posed (in the sense of Hadamard), and the fractional Landweber method and the modified quasi-boundary value method are used to deal with this inverse problem and the regularized solution is also obtained. The convergence estimates are addressed for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. In addition, we give a numerical example to illustrate the proposed method.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] New discretization of Caputo-Fabrizio derivative
    Akman, Tugba
    Yildiz, Burak
    Baleanu, Dumitru
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3307 - 3333
  • [42] Fractional speeded up robust features detector with the Caputo-Fabrizio derivative
    Lavin-Delgado, J. E.
    Solis-Perez, J. E.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32957 - 32972
  • [43] Analysis of the proportional Caputo-Fabrizio derivative
    Akgul, Ali
    Baleanu, Dumitru
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (04): : 339 - 351
  • [44] Hybrid technique for multi-dimensional fractional diffusion problems involving Caputo-Fabrizio derivative
    Yadav, Surendar Kumar
    Purohit, Mridula
    Gour, Murli Manohar
    Yadav, Lokesh Kumar
    Mishra, Manvendra Narayan
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2024,
  • [45] A second-order accurate scheme for two-dimensional space fractional diffusion equations with time Caputo-Fabrizio fractional derivative
    Shi, Jiankang
    Chen, Minghua
    APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 246 - 262
  • [46] A fractional order pine wilt disease model with Caputo-Fabrizio derivative
    Khan, Muhammad Altaf
    Ullah, Saif
    Okosun, K. O.
    Shah, Kamil
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [47] Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales
    Mozyrska, Dorota
    Torres, Delfim F. M.
    Wyrwas, Malgorzata
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 32 : 168 - 176
  • [48] An Extension of the Picard Theorem to Fractional Differential Equations with a Caputo-Fabrizio Derivative
    Marasi, H. R.
    Joujehi, A. Soltani
    Aydi, H.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [49] A FRACTIONAL MODEL FOR THE DYNAMICS OF TUBERCULOSIS INFECTION USING CAPUTO-FABRIZIO DERIVATIVE
    Ullah, Saif
    Khan, Muhammad Altaf
    Farooq, Muhammad
    Hammouch, Zakia
    Baleanu, Dumitru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 975 - 993
  • [50] Fractional speeded up robust features detector with the Caputo-Fabrizio derivative
    J. E. Lavín-Delgado
    J. E. Solís-Pérez
    J. F. Gómez-Aguilar
    R. F. Escobar-Jiménez
    Multimedia Tools and Applications, 2020, 79 : 32957 - 32972