Recovering the space source term for the fractional-diffusion equation with Caputo-Fabrizio derivative

被引:6
|
作者
Le Nhat Huynh [1 ]
Nguyen Hoang Luc [2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
Le Dinh Long [2 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Inst Space Sci, Magurele, Romania
关键词
Source function; Fractional diffusion equation; Caputo-Fabrizio fractional derivative; Regularization method; 26A33; 35B65; 35R11;
D O I
10.1186/s13660-021-02557-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the study of the source function for the Caputo-Fabrizio time fractional diffusion equation. This new definition of the fractional derivative has no singularity. In other words, the new derivative has a smooth kernel. Here, we investigate the existence of the source term. Through an example, we show that this problem is ill-posed (in the sense of Hadamard), and the fractional Landweber method and the modified quasi-boundary value method are used to deal with this inverse problem and the regularized solution is also obtained. The convergence estimates are addressed for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. In addition, we give a numerical example to illustrate the proposed method.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] On the mathematical model of Rabies by using the fractional Caputo-Fabrizio derivative
    Aydogan, Seher Melike
    Baleanu, Dumitru
    Mohammadi, Hakimeh
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [32] FRACTIONAL DYNAMICS OF CORONAVIRUS WITH COMORBIDITY VIA CAPUTO-FABRIZIO DERIVATIVE
    Bonyah, E.
    Juga, M.
    Fatmawati
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [33] PROPERTIES OF THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE AND ITS DISTRIBUTIONAL SETTINGS
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    Zorica, Dusan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 29 - 44
  • [34] New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator
    Qureshi, Sania
    Rangaig, Norodin A.
    Baleanu, Dumitru
    MATHEMATICS, 2019, 7 (04)
  • [35] Analysis of fractional Fokker-Planck equation with Caputo and Caputo-Fabrizio derivatives
    Cetinkaya, Suleyman
    Demir, Ali
    Baleanu, Dumitru
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 334 - 348
  • [36] A robust stability criterion in the one-dimensional subdiffusion equation with Caputo-Fabrizio fractional derivative
    Temoltzi-Avila, R.
    RICERCHE DI MATEMATICA, 2024, 74 (2) : 1119 - 1136
  • [37] A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative
    Baleanu, Dumitru
    Mohammadi, Hakimeh
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [38] A New Result for Fractional Differential Equation With Nonlocal Initial Value Using Caputo-Fabrizio Derivative
    Mokhtary, Z.
    Ghaemi, M. B.
    Salahshour, S.
    FILOMAT, 2022, 36 (09) : 2881 - 2890
  • [39] Orthonormal Euler wavelets method for time-fractional Cattaneo equation with Caputo-Fabrizio derivative
    Xu, Xiaoyong
    Zhou, Fengying
    AIMS MATHEMATICS, 2023, 8 (02): : 2736 - 2762
  • [40] A Fast Compact Finite Difference Method for Fractional Cattaneo Equation Based on Caputo-Fabrizio Derivative
    Qiao, Haili
    Liu, Zhengguang
    Cheng, Aijie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020