CLASSIFICATION OF LEFT INVARIANT METRICS ON 4-DIMENSIONAL SOLVABLE LIE GROUPS

被引:3
|
作者
Sukilovic, Tijana [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
关键词
solvable Lie groups; left invariant metrics; metric algebra; Ricci-parallel metrics; Einstein spaces; NONHOLONOMIC RIEMANNIAN STRUCTURES;
D O I
10.2298/TAM200826014S
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper the complete classification of left invariant metrics of arbitrary signature on solvable Lie groups is given. By identifying the Lie algebra with the algebra of left invariant vector fields on the corresponding Lie group G, the inner product <center dot , center dot > on g = Lie G extends uniquely to a left invariant metric.. on the Lie group. Therefore, the classification problem is reduced to the problem of classification of pairs (g, <center dot , center dot >) known as the metric Lie algebras. Although two metric algebras may be isometric even if the corresponding Lie algebras are non-isomorphic, this paper will show that in the 4-dimensional solvable case isometric means isomorphic. Finally, the curvature properties of the obtained metric algebras are considered and, as a corollary, the classification of flat, locally symmetric, Ricciflat, Ricci-parallel and Einstein metrics is also given.
引用
收藏
页码:181 / 204
页数:24
相关论文
共 50 条
  • [41] Existence of left invariant Ricci flat metrics on nilpotent Lie groups
    Yujian Xiang
    Zaili Yan
    Archiv der Mathematik, 2021, 117 : 569 - 578
  • [42] Left Invariant Einstein-Randers Metrics on Compact Lie Groups
    Wang, Hui
    Deng, Shaoqiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 870 - 881
  • [43] Left-Invariant Pseudo-Einstein Metrics on Lie Groups
    Sheng Chen
    Ke Liang
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 236 - 246
  • [44] Existence of left invariant Ricci flat metrics on nilpotent Lie groups
    Xiang, Yujian
    Yan, Zaili
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 569 - 578
  • [45] LEFT-INVARIANT PSEUDO-EINSTEIN METRICS ON LIE GROUPS
    Chen, Sheng
    Liang, Ke
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (02) : 236 - 246
  • [46] CONJUGATE-POINTS OF LEFT INVARIANT METRICS ON LIE-GROUPS
    KAIZER, VV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1990, (11): : 27 - 37
  • [47] LIE-GROUPS WHICH ADMIT FLAT LEFT INVARIANT METRICS
    HERRING, JR
    OSULLIVAN, JJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 82 (02) : 257 - 260
  • [48] Left invariant Randers metrics of Berwald type on tangent Lie groups
    Asgari, Farhad
    Moghaddam, Hamid Reza Salimi
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (01)
  • [49] Cotangent bundles of 4-dimensional hypercomplex Lie groups
    Anna Fino
    manuscripta mathematica, 2002, 109 : 527 - 541
  • [50] Lorentz geometry of 4-dimensional nilpotent Lie groups
    Bokan, N.
    Sukilovic, T.
    Vukmirovic, S.
    GEOMETRIAE DEDICATA, 2015, 177 (01) : 83 - 102