Limit cycles of a perturbed cubic polynomial differential center

被引:47
|
作者
Buica, Adriana
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Babes Bolyai, Dept Appl Math, RO-400084 Cluj Napoca, Romania
关键词
D O I
10.1016/j.chaos.2005.11.060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the limit cycles of the system x = -y(x + a) (y + b) + epsilon P(x, y) y = x(x + a) (y + b) + epsilon Q(x, y) for epsilon sufficiently small, where a, b is an element of R \ {0}, and P, Q are polynomials of degree n. We obtain that 3[(n - 1)/2] + 4 if a not equal b and, respectively, 2[(n - 1)/2] + 2 if a = b, up to first order in epsilon, are upper bounds for the number of the limit cycles that bifurcate from the period annulus of the cubic center given by epsilon = 0. Moreover, there are systems with at least 3[(n - 1)/2] + 2 limit cycles if a not equal b and, respectively, 2[(n - 1)/2] + 1 if a = b. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1059 / 1069
页数:11
相关论文
共 50 条
  • [31] Polynomial differential systems with hyperbolic limit cycles
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 194
  • [32] Limit cycles bifurcating from a perturbed quartic center
    Coll, Bartomeu
    Llibre, Jaume
    Prohens, Rafel
    CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 317 - 334
  • [33] Bifurcation of Limit Cycles from a Polynomial Degenerate Center
    Buica, Adriana
    Gine, Jaume
    Llibre, Jaume
    ADVANCED NONLINEAR STUDIES, 2010, 10 (03) : 597 - 609
  • [34] The number of limit cycles of a quintic polynomial system with center
    Atabaigi, Ali
    Nyamoradi, Nemat
    Zangeneh, Hamid R. Z.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3008 - 3017
  • [35] The same distribution of limit cycles in five perturbed cubic Hamiltonian systems
    Liu, ZR
    Yang, ZY
    Jiang, T
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01): : 243 - 249
  • [36] Number of Limit Cycles from a Class of Perturbed Piecewise Polynomial Systems
    Chen, Xiaoyan
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (09):
  • [37] On the number of limit cycles of a class of polynomial differential systems
    Llibre, Jaume
    Valls, Claudia
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2144): : 2347 - 2360
  • [38] A polynomial differential system with nine limit cycles at infinity
    Huang, WT
    Liu, YR
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (3-4) : 577 - 588
  • [39] On the Limit Cycles for Continuous and Discontinuous Cubic Differential Systems
    Jiang, Ziguo
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [40] Limit cycles of the generalized polynomial Lienard differential equations
    Llibre, Jaume
    Mereu, Ana Cristina
    Teixeira, Marco Antonio
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 363 - 383