Limit cycles of a perturbed cubic polynomial differential center

被引:47
|
作者
Buica, Adriana
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Babes Bolyai, Dept Appl Math, RO-400084 Cluj Napoca, Romania
关键词
D O I
10.1016/j.chaos.2005.11.060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the limit cycles of the system x = -y(x + a) (y + b) + epsilon P(x, y) y = x(x + a) (y + b) + epsilon Q(x, y) for epsilon sufficiently small, where a, b is an element of R \ {0}, and P, Q are polynomials of degree n. We obtain that 3[(n - 1)/2] + 4 if a not equal b and, respectively, 2[(n - 1)/2] + 2 if a = b, up to first order in epsilon, are upper bounds for the number of the limit cycles that bifurcate from the period annulus of the cubic center given by epsilon = 0. Moreover, there are systems with at least 3[(n - 1)/2] + 2 limit cycles if a not equal b and, respectively, 2[(n - 1)/2] + 1 if a = b. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1059 / 1069
页数:11
相关论文
共 50 条
  • [21] LIMIT CYCLES OF PERTURBED GLOBAL ISOCHRONOUS CENTER
    Diab, Zouhair
    de Bustos, Maria Teresa
    Lopez, Miguel Angel
    Martinez, Raquel
    3C TECNOLOGIA, 2022, 11 (02): : 25 - 36
  • [22] A cubic polynomial system with seven limit cycles at infinity
    Zhang, Qi
    Liu, Yirong
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 319 - 329
  • [23] Bifurcation of limit cycles in a cubic Hamiltonian system with perturbed terms
    Hong, Xiao-Chun
    Qin, Qing-Hua
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 12 - 16
  • [24] On the number of limit cycles for some perturbed Hamiltonian polynomial systems
    Llibre, J
    Zhang, X
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2001, 8 (02): : 161 - 181
  • [25] Number and location of limit cycles in a class of perturbed polynomial systems
    Yang C.-X.
    Wang R.-Q.
    Acta Mathematicae Applicatae Sinica, 2004, 20 (1) : 155 - 166
  • [26] On the number of limit cycles for a perturbed cubic reversible Hamiltonian system
    Yang, Jihua
    CHAOS, 2024, 34 (10)
  • [27] Limit cycles for a class of polynomial differential systems
    Qiao, Jianyuan
    Shui, Shuliang
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (09) : 1 - 9
  • [28] A CUBIC DIFFERENTIAL SYSTEM WITH NINE LIMIT CYCLES
    Lloyd, Noel G.
    Pearson, Jane M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (03): : 293 - 304
  • [29] ON THE NUMBER OF LIMIT CYCLES OF A POLYNOMIAL DIFFERENTIAL SYSTEM
    Peipei Zuo
    Annals of Applied Mathematics, 2011, (02) : 276 - 282
  • [30] LIMIT CYCLES FOR QUADRATIC AND CUBIC PLANAR DIFFERENTIAL EQUATIONS UNDER POLYNOMIAL PERTURBATIONS OF SMALL DEGREE
    Martins, Ricardo M.
    Gomide, Otavio M. L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3353 - 3386