Efficient Attention Pyramid Network for Semantic Segmentation

被引:8
|
作者
Yang, Qirui [1 ,2 ,3 ]
Ku, Tao [1 ,2 ]
Hu, Kunyuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Sch Comp & Control, Beijing 100049, Peoples R China
关键词
Semantics; Convolution; Feature extraction; Task analysis; Image segmentation; Decoding; Computer vision; Semantic segmentation; attention mechanism; spatial pyramid; PASCAL VOC 2012; Cityscapes;
D O I
10.1109/ACCESS.2021.3053316
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation is a task that covers most of the perception needs of intelligent vehicles in an unified way. Recent studies witnessed that attention mechanisms achieve impressive performance in computer vision task. Current attention mechanisms based segmentation methods differ with each other in position and form of the attention mechanism, and perform differently in practice. This paper firstly introduces the effectiveness of multi-scale context features and attention mechanisms in segmentation tasks. We find that multi-scale and channel attention can play a vital role in constructing effective context features. Based on this analysis, this paper proposes an efficient attention pyramid network (EAPNet) for semantic segmentation. Specifically, to efficient handle the problem of segmenting objects at multiple scales, we design efficient channel attention pyramid (ECAP) which employ atrous convolution with channel attention in cascade or in parallel to capture multi-scale context by using multiple atrous rates. Furthermore, we propose a residual attention fusion block (RAFB), whose purpose is to simultaneously focus on meaningful low-level feature maps and spatial location information. At the same time, we will explore different channel attention modules and spatial attention modules, and describe their impact on network performance. We empirically evaluate our EAPNet on two semantic segmentation datasets, including PASCAL VOC 2012 and Cityscapes datasets. Experimental results show that without MS COCO pre-training and any post-processing, EAPNet achieved 81.7% mIoU on the PASCAL VOC 2012 validation set. With deeplabv3+ as the benchmark, EAPNet improve the model performance of more than 1.50% mIoU.
引用
收藏
页码:18867 / 18875
页数:9
相关论文
共 50 条
  • [41] Lightweight Attention Pyramid Network for Object Detection and Instance Segmentation
    Zhang, Jiwei
    Yan, Yanyu
    Cheng, Zelei
    Wang, Wendong
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [42] Automated Segmentation of Skin Lesion Based on Pyramid Attention Network
    Wang, Huan
    Wang, Guotai
    Sheng, Ze
    Zhang, Shaoting
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2019), 2019, 11861 : 435 - 443
  • [43] Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
    Zhou, Yan
    Zhou, Haibin
    Yang, Yin
    Li, Jianxun
    Irampaye, Richard
    Wang, Dongli
    Zhang, Zhengpeng
    VISUAL COMPUTER, 2024, : 3109 - 3128
  • [44] EANET: EFFICIENT ATTENTION-AUGMENTED NETWORK FOR REAL-TIME SEMANTIC SEGMENTATION
    Dong, Jianan
    Guo, Jichang
    Yue, Huihui
    Gao, Huan
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3968 - 3972
  • [45] Semantic segmentation using stride spatial pyramid pooling and dual attention decoder
    Peng, Chengli
    Ma, Jiayi
    PATTERN RECOGNITION, 2020, 107 (107)
  • [46] Dense Pyramid Network for Semantic Segmentation of High Resolution Aerial Imagery
    Pan, Xuran
    Gao, Lianru
    Zhang, Bing
    Yang, Fan
    Liao, Wenzhi
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 362 - 369
  • [47] Spatial Structure Preserving Feature Pyramid Network for Semantic Image Segmentation
    Yuan, Yuan
    Fang, Jie
    Lu, Xiaoqiang
    Feng, Yachuang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2019, 15 (03)
  • [48] Semantic Segmentation Network Based on Adaptive Attention and Deep Fusion Utilizing a Multi-Scale Dilated Convolutional Pyramid
    Zhao, Shan
    Wang, Zihao
    Huo, Zhanqiang
    Zhang, Fukai
    SENSORS, 2024, 24 (16)
  • [49] Fusion Attention Network for Autonomous Cars Semantic Segmentation
    Wang, Chuyao
    Aouf, Nabil
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1525 - 1530
  • [50] An Attention Enhanced Graph Convolutional Network for Semantic Segmentation
    Chen, Ao
    Zhou, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 734 - 745