Efficient Attention Pyramid Network for Semantic Segmentation

被引:8
|
作者
Yang, Qirui [1 ,2 ,3 ]
Ku, Tao [1 ,2 ]
Hu, Kunyuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Sch Comp & Control, Beijing 100049, Peoples R China
关键词
Semantics; Convolution; Feature extraction; Task analysis; Image segmentation; Decoding; Computer vision; Semantic segmentation; attention mechanism; spatial pyramid; PASCAL VOC 2012; Cityscapes;
D O I
10.1109/ACCESS.2021.3053316
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation is a task that covers most of the perception needs of intelligent vehicles in an unified way. Recent studies witnessed that attention mechanisms achieve impressive performance in computer vision task. Current attention mechanisms based segmentation methods differ with each other in position and form of the attention mechanism, and perform differently in practice. This paper firstly introduces the effectiveness of multi-scale context features and attention mechanisms in segmentation tasks. We find that multi-scale and channel attention can play a vital role in constructing effective context features. Based on this analysis, this paper proposes an efficient attention pyramid network (EAPNet) for semantic segmentation. Specifically, to efficient handle the problem of segmenting objects at multiple scales, we design efficient channel attention pyramid (ECAP) which employ atrous convolution with channel attention in cascade or in parallel to capture multi-scale context by using multiple atrous rates. Furthermore, we propose a residual attention fusion block (RAFB), whose purpose is to simultaneously focus on meaningful low-level feature maps and spatial location information. At the same time, we will explore different channel attention modules and spatial attention modules, and describe their impact on network performance. We empirically evaluate our EAPNet on two semantic segmentation datasets, including PASCAL VOC 2012 and Cityscapes datasets. Experimental results show that without MS COCO pre-training and any post-processing, EAPNet achieved 81.7% mIoU on the PASCAL VOC 2012 validation set. With deeplabv3+ as the benchmark, EAPNet improve the model performance of more than 1.50% mIoU.
引用
收藏
页码:18867 / 18875
页数:9
相关论文
共 50 条
  • [1] Global Attention Pyramid Network for Semantic Segmentation
    Zhang, Na
    Li, Jun
    Li, Yongrui
    Du, Yang
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8728 - 8732
  • [2] PCANet: Pyramid convolutional attention network for semantic segmentation
    Sang, Haiwei
    Zhou, Qiuhao
    Zhao, Yong
    IMAGE AND VISION COMPUTING, 2020, 103
  • [3] Pyramid Attention Aggregation Network for Semantic Segmentation of Surgical Instruments
    Ni, Zhen-Liang
    Bian, Gui-Bin
    Wang, Guan-An
    Zhou, Xiao-Hu
    Hou, Zeng-Guang
    Chen, Hua-Bin
    Xie, Xiao-Liang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11782 - 11790
  • [4] Deformable attention-oriented feature pyramid network for semantic segmentation
    Lu, Lei
    Xiao, Yun
    Chang, Xiaojun
    Wang, Xuanhong
    Ren, Pengzhen
    Ren, Zhe
    KNOWLEDGE-BASED SYSTEMS, 2022, 254
  • [5] PPANet: Point-Wise Pyramid Attention Network for Semantic Segmentation
    Elhassan, Mohammed A. M.
    Chen, YuXuan
    Chen, Yunyi
    Huang, Chenxi
    Yang, Jane
    Yao, Xingcong
    Yang, Chenhui
    Cheng, Yinuo
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [6] Pyramid Self-attention for Semantic Segmentation
    Qi, Jiyang
    Wang, Xinggang
    Hu, Yao
    Tang, Xu
    Liu, Wenyu
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, 2021, 13019 : 480 - 492
  • [7] Semantic segmentation based on double pyramid network with improved global attention mechanism
    Xianfeng Ou
    Hanpu Wang
    Guoyun Zhang
    Wujing Li
    Shuixiang Yu
    Applied Intelligence, 2023, 53 : 18898 - 18909
  • [8] Semantic segmentation based on double pyramid network with improved global attention mechanism
    Ou, Xianfeng
    Wang, Hanpu
    Zhang, Guoyun
    Li, Wujing
    Yu, Shuixiang
    APPLIED INTELLIGENCE, 2023, 53 (15) : 18898 - 18909
  • [9] Semantic segmentation based on enhanced gated pyramid network with lightweight attention module
    Viswanathan, A.
    Kumar, V. Senthil
    Umamaheswari, M.
    Janarthanan, Vignesh
    Jaganathan, M.
    AI COMMUNICATIONS, 2024, 37 (01) : 97 - 114
  • [10] An Efficient Sampling-Based Attention Network for Semantic Segmentation
    He, Xingjian
    Liu, Jing
    Wang, Weining
    Lu, Hanqing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2850 - 2863