How to compute the Stanley depth of a monomial ideal

被引:102
|
作者
Herzog, Huergen [1 ]
Vladoiu, Marius [2 ]
Zheng, Xinxian [1 ]
机构
[1] Univ Duisburg Essen, Fachbereich Math & Informat, D-45117 Essen, Germany
[2] Univ Bucuresti, Fac Matemat & Informat, RO-010014 Bucharest, Romania
关键词
Stanley depth; Stanley decomposition; Partitions; Prime filtrations; FILTRATIONS; CONJECTURE; MODULES;
D O I
10.1016/j.jalgebra.2008.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J subset of I be monomial ideals. We show that the Stanley depth of I/J can be computed in a finite number of steps. We also introduce the fdepth of a monomial ideal which is defined in terms of prime filtrations and show that it can also be computed in a finite number of steps. In both cases it is shown that these invariants can be determined by considering partitions of suitable finite posets into intervals. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3151 / 3169
页数:19
相关论文
共 50 条
  • [1] AN ALGORITHM TO COMPUTE THE STANLEY DEPTH OF MONOMIAL IDEALS
    Rinaldo, Giancarlo
    MATEMATICHE, 2008, 63 (02): : 243 - 256
  • [2] STANLEY DEPTH AND SIZE OF A MONOMIAL IDEAL
    Herzog, Juergen
    Popescu, Dorin
    Vladoiu, Marius
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) : 493 - 504
  • [3] HOW TO COMPUTE THE STANLEY DEPTH OF A MODULE
    Ichim, Bogdan
    Katthan, Lukas
    Jose Moyano-Fernandez, Julio
    MATHEMATICS OF COMPUTATION, 2017, 86 (303) : 455 - 472
  • [4] ON THE STANLEY DEPTH OF MONOMIAL IDEALS
    Cimpoeas, Mircea
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 58 (02): : 205 - 212
  • [5] Stanley depth of monomial ideals
    Popescu, Dorin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (01): : 95 - 101
  • [6] Stanley depth of squarefree monomial ideals
    Keller, Mitchel T.
    Young, Stephen J.
    JOURNAL OF ALGEBRA, 2009, 322 (10) : 3789 - 3792
  • [7] ON THE STANLEY DEPTH AND SIZE OF MONOMIAL IDEALS
    Fakhari, S. A. Seyed
    GLASGOW MATHEMATICAL JOURNAL, 2017, 59 (03) : 705 - 715
  • [8] On the Stanley Depth of Powers of Monomial Ideals
    Fakhari, S. A. Seyed
    MATHEMATICS, 2019, 7 (07)
  • [9] Stanley depth and Stanley support-regularity of monomial ideals
    Yi-Huang Shen
    Collectanea Mathematica, 2016, 67 : 227 - 246
  • [10] Stanley depth and Stanley support-regularity of monomial ideals
    Shen, Yi-Huang
    COLLECTANEA MATHEMATICA, 2016, 67 (02) : 227 - 246