Nonconvex image reconstruction via expectation propagation

被引:3
|
作者
Muntoni, Anna Paola [1 ,2 ,3 ]
Hernandez Rojas, Rafael Diaz [4 ]
Braunstein, Alfredo [1 ,5 ,6 ,7 ]
Pagnani, Andrea [1 ,5 ,6 ]
Castillo, Isaac Perez [8 ,9 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol DISAT, Corso Duca Abruzzi 24, Turin, Italy
[2] Univ Paris, Lab Phys Ecole Normale Super, Univ PSL, CNRS,Sorbonne Univ,ENS, F-75005 Paris, France
[3] Sorbonne Univ, CNRS, Inst Biol Paris Seine, Lab Computat & Quantitat Biol, F-75005 Paris, France
[4] Sapienza Univ Rome, Dipartimento Fis, Ple Aldo Moro 5, I-00185 Rome, Italy
[5] Italian Inst Genom Med Form HuGeF, SP142 Km 3-95, I-10060 Candiolo, Italy
[6] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[7] Coll Carlo Alberto, Piazza Vincenzo Arbarello 8, I-10122 Turin, Italy
[8] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Cuant & Foton, POB 20-364, Mexico City 01000, DF, Mexico
[9] London Math Lab, 8 Margravine Gardens, London W6 8RH, England
基金
欧盟地平线“2020”;
关键词
VIEWS;
D O I
10.1103/PhysRevE.100.032134
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The problem of efficiently reconstructing tomographic images can be mapped into a Bayesian inference problem over the space of pixels densities. Solutions to this problem are given by pixels assignments that are compatible with tomographic measurements and maximize a posterior probability density. This maximization can be performed with standard local optimization tools when the log-posterior is a convex function, but it is generally intractable when introducing realistic nonconcave priors that reflect typical images features such as smoothness or sharpness. We introduce a new method to reconstruct images obtained from Radon projections by using expectation propagation, which allows us to approximate the intractable posterior. We show, by means of extensive simulations, that, compared to state-of-the-art algorithms for this task, expectation propagation paired with very simple but non-log-concave priors is often able to reconstruct images up to a smaller error while using a lower amount of information per pixel. We provide estimates for the critical rate of information per pixel above which recovery is error-free by means of simulations on ensembles of phantom and real images.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Nonsmooth Nonconvex LDCT Image Reconstruction via Learned Descent Algorithm
    Zhang, Qingchao
    Ye, Xiaojing
    Chen, Yunmei
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIII, 2021, 11840
  • [2] Compressed sensing reconstruction using expectation propagation
    Braunstein, Alfredo
    Muntoni, Anna Paola
    Pagnani, Andrea
    Pieropan, Mirko
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (18)
  • [3] Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
    Chen, Yunmei
    Liu, Hongcheng
    Ye, Xiaojing
    Zhang, Qingchao
    SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (04): : 1532 - 1564
  • [4] Image Reconstruction by Multilabel Propagation
    Zisler, Matthias
    Astrom, Freddie
    Petra, Stefania
    Schnoerr, Christoph
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2017, 2017, 10302 : 247 - 259
  • [5] Exact reconstruction of sparse signals via nonconvex minimization
    Chartrand, Rick
    IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (10) : 707 - 710
  • [6] Mixed-expectation image-reconstruction technique
    Garcia, JP
    Dereniak, EL
    APPLIED OPTICS, 1999, 38 (17) : 3745 - 3748
  • [7] Scalable Gaussian Process Classification via Expectation Propagation
    Hernandez-Lobato, Daniel
    Hernandez-Lobato, Jose Miguel
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 168 - 176
  • [8] Image reconstruction by nonconvex inexact half-quadratic optimization
    Robini, Marc
    Niu, Pei
    Yang, Feng
    Zhu, Yuemin
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [9] A high quality image reconstruction method based on nonconvex decoding
    ZHAO GuangHui
    SHEN FangFang
    WANG ZhengYang
    WU WeiJia
    SHI GuangMing
    LIU DanHua
    Science China(Information Sciences), 2013, 56 (11) : 184 - 193
  • [10] Fast Nonconvex Nonsmooth Minimization Methods for Image Restoration and Reconstruction
    Nikolova, Mila
    Ng, Michael K.
    Tam, Chi-Pan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (12) : 3073 - 3088