Using machine learning for particle identification in ALICE

被引:7
|
作者
Graczykowski, Lukasz Kamil [1 ]
Jakubowska, Monika [2 ]
Deja, Kamil Rafal [3 ]
Kabus, Maja [1 ]
机构
[1] Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Elect Engn, Pl Politech 1, PL-00661 Warsaw, Poland
[3] Warsaw Univ Technol, Fac Elect & Informat Technol, Nowowiejska 15-19, PL-00665 Warsaw, Poland
来源
JOURNAL OF INSTRUMENTATION | 2022年 / 17卷 / 07期
关键词
Particle identification methods; Analysis and statistical methods; Data processing; QUARK-GLUON PLASMA;
D O I
10.1088/1748-0221/17/07/C07016
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Particle identification (PID) is one of the main strengths of the ALICE experiment at the LHC. It is a crucial ingredient for detailed studies of the strongly interacting matter formed in ultrarelativistic heavy-ion collisions. ALICE provides PID information via various experimental techniques, allowing for the identification of particles over a broad momentum range (from around 100 MeV/c to around 50 GeV/c). The main challenge is how to combine the information from various detectors effectively. Therefore, PID represents a model classification problem, which can be addressed using Machine Learning (ML) solutions. Moreover, the complexity of the detector and richness of the detection techniques make PID an interesting area of research also for the computer science community. In this work, we show the current status of the ML approach to PID in ALICE. We discuss the preliminary work with the Random Forest approach for the LHC Run 2 and a more advanced solution based on Domain Adaptation Neural Networks, including a proposal for its future implementation within the ALICE computing software for the upcoming LHC Run 3.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Machine-learning-based particle identification with missing data
    Kasak, Milosz
    Deja, Kamil
    Karwowska, Maja
    Jakubowska, Monika
    Graczykowski, Lukasz
    Janik, Malgorzata
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (07):
  • [32] Particle identification with the ALICE TOF detector at very high particle multiplicity
    Zampolli, C
    FROM QUARKS TO BLACK HOLES: PROGRESS IN UNDERSTANDING THE LOGIC OF NATURE, 2005, 41 : 525 - 535
  • [33] Particle identification with the ALICE TOF detector at very high particle multiplicity
    Akindinov, A. N.
    Alici, A.
    Anselmo, F.
    Antonioli, P.
    Baek, Y. W.
    Basile, M.
    Romeo, G. Cara
    Cerron-Zeballos, E.
    Cifarelli, L.
    Cindolo, F.
    Cosenza, F.
    De Caro, A.
    De Pasquale, S.
    Di Bartolomeo, A.
    Girard, M. Fusco
    Golovine, V.
    Guida, M.
    Hatzifotiadou, D.
    Kaidalov, A. B.
    Kiselev, S. M.
    Laurenti, G.
    Lioublev, E.
    Luvisetto, M. L.
    Margotti, A.
    Martemiyanov, A. N.
    Morozov, S.
    Nania, R.
    Otiougova, P.
    Pesci, A.
    Pierella, F.
    Polozov, P. A.
    Scapparone, E.
    Scioli, G.
    Sellitto, S.
    Smirnitski, A. V.
    Tchoumakov, M. M.
    Vacca, G. P.
    Valenti, G.
    Venturi, G.
    Vicinanza, D.
    Voloshin, K. G.
    Williams, M. C. S.
    Witoszynskyj, S.
    Zagreev, B. V.
    Zampolli, C.
    Zichichi, A.
    EUROPEAN PHYSICAL JOURNAL C, 2004, 32 (Suppl 1): : S165 - S177
  • [34] Particle identification with the ALICE TOF detector at very high particle multiplicity
    A.N. Akindinov
    A. Alici
    F. Anselmo
    P. Antonioli
    Y.W. Baek
    M. Basile
    G. Cara Romeo
    E. Cerron-Zeballos
    L. Cifarelli
    F. Cindolo
    F. Cosenza
    A. De Caro
    S. De Pasquale
    A. Di Bartolomeo
    M. Fusco Girard
    V. Golovine
    M. Guida
    D. Hatzifotiadou
    A.B. Kaidalov
    S.M. Kiselev
    G. Laurenti
    E. Lioublev
    M.L. Luvisetto
    A. Margotti
    A.N. Martemiyanov
    S. Morozov
    R. Nania
    P. Otiougova
    A. Pesci
    F. Pierella
    P.A. Polozov
    E. Scapparone
    G. Scioli
    S. Sellitto
    A.V. Smirnitski
    M.M. Tchoumakov
    G P. Vacca
    G. Valenti
    G. Venturi
    D. Vicinanza
    K.G. Voloshin
    M.C.S. Williams
    S. Witoszynskyj
    B.V. Zagreev
    C. Zampolli
    A. Zichichi
    The European Physical Journal C - Particles and Fields, 2004, 32 : s165 - s177
  • [35] Event reconstruction and particle identification in the ALICE experiment at the LHC
    Belikov, Iouri
    1ST INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS, 2014, 70
  • [36] Charged particle identification with PHOS and central tracking of ALICE
    R. Wan
    C. Xu
    D. Zhou
    Z. Yin
    Indian Journal of Physics, 2011, 85 : 1197 - 1201
  • [37] Charged particle identification with PHOS and central tracking of ALICE
    Wan, R.
    Xu, C.
    Zhou, D.
    Yin, Z.
    INDIAN JOURNAL OF PHYSICS, 2011, 85 (07) : 1197 - 1201
  • [38] A FAST RICH DETECTOR FOR PARTICLE IDENTIFICATION IN ALICE AT LHC
    DIMAURO, A
    LJUBICIC, A
    NAPPI, E
    PAIC, G
    PIUZ, F
    POSA, F
    RIBEIRO, R
    SCOGNETTI, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1994, 343 (01): : 323 - 326
  • [39] Fast RICH detector for particle identification in ALICE at LHC
    DiMauro, D.
    Ljubicic, A.
    Nappi, E.
    Paic, G.
    Piuz, F.
    Posa, F.
    Ribeiro, R.
    Scognetti, T.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, A343 (01) : 323 - 326
  • [40] Particle identification of the ALICE TPC via dE/dx
    Yu, Weilin
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 706 : 55 - 58