Using machine learning for particle identification in ALICE

被引:7
|
作者
Graczykowski, Lukasz Kamil [1 ]
Jakubowska, Monika [2 ]
Deja, Kamil Rafal [3 ]
Kabus, Maja [1 ]
机构
[1] Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Elect Engn, Pl Politech 1, PL-00661 Warsaw, Poland
[3] Warsaw Univ Technol, Fac Elect & Informat Technol, Nowowiejska 15-19, PL-00665 Warsaw, Poland
来源
JOURNAL OF INSTRUMENTATION | 2022年 / 17卷 / 07期
关键词
Particle identification methods; Analysis and statistical methods; Data processing; QUARK-GLUON PLASMA;
D O I
10.1088/1748-0221/17/07/C07016
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Particle identification (PID) is one of the main strengths of the ALICE experiment at the LHC. It is a crucial ingredient for detailed studies of the strongly interacting matter formed in ultrarelativistic heavy-ion collisions. ALICE provides PID information via various experimental techniques, allowing for the identification of particles over a broad momentum range (from around 100 MeV/c to around 50 GeV/c). The main challenge is how to combine the information from various detectors effectively. Therefore, PID represents a model classification problem, which can be addressed using Machine Learning (ML) solutions. Moreover, the complexity of the detector and richness of the detection techniques make PID an interesting area of research also for the computer science community. In this work, we show the current status of the ML approach to PID in ALICE. We discuss the preliminary work with the Random Forest approach for the LHC Run 2 and a more advanced solution based on Domain Adaptation Neural Networks, including a proposal for its future implementation within the ALICE computing software for the upcoming LHC Run 3.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Improved calorimetric particle identification in NA62 using machine learning techniques
    Cortina Gil, E.
    Kleimenova, A.
    Minucci, E.
    Padolski, S.
    Petrov, P.
    Shaikhiev, A.
    Volpe, R.
    Fedorko, W.
    Numao, T.
    Petrov, Y.
    Velghe, B.
    Wong, V. W. S.
    Yu, M.
    Bryman, D.
    Fu, J.
    Hives, Z.
    Husek, T.
    Jerhot, J.
    Kampf, K.
    Zamkovsky, M.
    De Martino, B.
    Perrin-Terrin, M.
    Akmete, A. T.
    Aliberti, R.
    Khoriauli, G.
    Kunze, J.
    Lomidze, D.
    Peruzzo, L.
    Vormstein, M.
    Wanke, R.
    Dalpiaz, P.
    Fiorini, M.
    Mazzolari, A.
    Neri, I.
    Norton, A.
    Petrucci, F.
    Soldani, M.
    Wahl, H.
    Bandiera, L.
    Cotta Ramusino, A.
    Gianoli, A.
    Romagnoni, M.
    Sytov, A.
    Iacopini, E.
    Latino, G.
    Lenti, M.
    Lo Chiatto, P.
    Panichi, I.
    Parenti, A.
    Bizzeti, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [22] Improved calorimetric particle identification in NA62 using machine learning techniques
    E. Cortina Gil
    A. Kleimenova
    E. Minucci
    S. Padolski
    P. Petrov
    A. Shaikhiev
    R. Volpe
    W. Fedorko
    T. Numao
    Y. Petrov
    B. Velghe
    V. W. S. Wong
    M. Yu
    D. Bryman
    J. Fu
    Z. Hives
    T. Husek
    J. Jerhot
    K. Kampf
    M. Zamkovsky
    B. De Martino
    M. Perrin-Terrin
    A. T. Akmete
    R. Aliberti
    G. Khoriauli
    J. Kunze
    D. Lomidze
    L. Peruzzo
    M. Vormstein
    R. Wanke
    P. Dalpiaz
    M. Fiorini
    A. Mazzolari
    I. Neri
    A. Norton
    F. Petrucci
    M. Soldani
    H. Wahl
    L. Bandiera
    A. Cotta Ramusino
    A. Gianoli
    M. Romagnoni
    A. Sytov
    E. Iacopini
    G. Latino
    M. Lenti
    P. Lo Chiatto
    I. Panichi
    A. Parenti
    A. Bizzeti
    Journal of High Energy Physics, 2023
  • [23] Using machine learning techniques for Data Quality Monitoring in CMS and ALICE
    Deja, Kamil
    7TH ANNUAL CONFERENCE ON LARGE HADRON COLLIDER PHYSICS, LHCP2019, 2019,
  • [24] A RICH DETECTOR AS PARTICLE IDENTIFICATION DETECTOR IN ALICE
    DIMAURO, A
    LJUBICIC, A
    NAPPI, E
    PAIC, G
    PIUZ, F
    POSA, F
    RIBEIRO, R
    SCOGNETTI, T
    NUCLEAR PHYSICS A, 1994, 566 : C619 - C622
  • [25] Particle identification studies with an ALICE test TPC
    Christiansen, Peter
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2007, 16 (7-8) : 2457 - 2462
  • [26] Particle identification with the ALICE transition radiation detector
    Pachmayer, Yvonne
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 766 : 292 - 295
  • [27] Perspectives for particle identification in ALICE using silicon-based timing detectors
    Preghenella, Roberto
    EIGHTH ANNUAL CONFERENCE ON LARGE HADRON COLLIDER PHYSICS, LHCP2020, 2021,
  • [28] Landslide identification using machine learning
    Haojie Wang
    Limin Zhang
    Kesheng Yin
    Hongyu Luo
    Jinhui Li
    Geoscience Frontiers, 2021, 12 (01) : 351 - 364
  • [29] Identification of chimera using machine learning
    Ganaie, M. A.
    Ghosh, Saptarshi
    Mendola, Naveen
    Tanveer, M.
    Jalan, Sarika
    CHAOS, 2020, 30 (06)
  • [30] Landslide identification using machine learning
    Wang, Haojie
    Zhang, Limin
    Yin, Kesheng
    Luo, Hongyu
    Li, Jinhui
    GEOSCIENCE FRONTIERS, 2021, 12 (01) : 351 - 364