Using machine learning for particle identification in ALICE

被引:7
|
作者
Graczykowski, Lukasz Kamil [1 ]
Jakubowska, Monika [2 ]
Deja, Kamil Rafal [3 ]
Kabus, Maja [1 ]
机构
[1] Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Elect Engn, Pl Politech 1, PL-00661 Warsaw, Poland
[3] Warsaw Univ Technol, Fac Elect & Informat Technol, Nowowiejska 15-19, PL-00665 Warsaw, Poland
来源
JOURNAL OF INSTRUMENTATION | 2022年 / 17卷 / 07期
关键词
Particle identification methods; Analysis and statistical methods; Data processing; QUARK-GLUON PLASMA;
D O I
10.1088/1748-0221/17/07/C07016
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Particle identification (PID) is one of the main strengths of the ALICE experiment at the LHC. It is a crucial ingredient for detailed studies of the strongly interacting matter formed in ultrarelativistic heavy-ion collisions. ALICE provides PID information via various experimental techniques, allowing for the identification of particles over a broad momentum range (from around 100 MeV/c to around 50 GeV/c). The main challenge is how to combine the information from various detectors effectively. Therefore, PID represents a model classification problem, which can be addressed using Machine Learning (ML) solutions. Moreover, the complexity of the detector and richness of the detection techniques make PID an interesting area of research also for the computer science community. In this work, we show the current status of the ML approach to PID in ALICE. We discuss the preliminary work with the Random Forest approach for the LHC Run 2 and a more advanced solution based on Domain Adaptation Neural Networks, including a proposal for its future implementation within the ALICE computing software for the upcoming LHC Run 3.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Particle identification with machine learning in ALICE Run 3
    Karwowska, Maja
    Jakubowska, Monika
    Graczykowski, Lukasz
    Deja, Kamil
    Kasak, Milosz
    26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, 2024, 295
  • [2] Particle identification with machine learning from incomplete data in the ALICE experiment
    Karwowska, Maja
    Graczykowski, Lukasz
    Deja, Kamil
    Kasak, Milosz
    Janik, Malgorzata
    JOURNAL OF INSTRUMENTATION, 2024, 19 (07):
  • [3] Particle identification using machine learning at the HADES experiment
    Wasiluk, Mateusz
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2020, 2020, 11581
  • [4] Visible Particle Identification Using Raman Spectroscopy and Machine Learning
    Sheng, Han
    Zhao, Yinping
    Long, Xiangan
    Chen, Liwen
    Li, Bei
    Fei, Yiyan
    Mi, Lan
    Ma, Jiong
    AAPS PHARMSCITECH, 2022, 23 (06)
  • [5] Visible Particle Identification Using Raman Spectroscopy and Machine Learning
    Han Sheng
    Yinping Zhao
    Xiangan Long
    Liwen Chen
    Bei Li
    Yiyan Fei
    Lan Mi
    Jiong Ma
    AAPS PharmSciTech, 23
  • [6] Particle identification with the Belle II calorimeter using machine learning
    Charan, Abtin Narimani
    20TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2023, 2438
  • [7] Particle identification and analysis in the SciCRT using machine learning tools
    Garcia, R.
    Anzorena, M.
    Valdes-Galicia, J. F.
    Matsubara, Y.
    Sako, T.
    Ortiz, E.
    Hurtado, A.
    Taylor, R.
    Musalem, O.
    Gonzalez, L. X.
    Itow, Y.
    Kawabata, T.
    Munakata, K.
    Kato, C.
    Kihara, W.
    Ko, Y.
    Shibata, S.
    Takamaru, H.
    Oshima, A.
    Koi, T.
    Kojima, H.
    Tsuchiya, H.
    Watanabe, K.
    Kozai, M.
    Nakamura, Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 1003 (1003):
  • [8] Particle identification in the ALICE experiment
    Kalweit, Alexander
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2011, 38 (12)
  • [9] Particle identification with the ALICE detector
    Scapparone, E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 598 (01): : 152 - 155
  • [10] Using Random Forest Classifier for Particle Identification in the ALICE Experiment
    Trzcinski, Tomasz
    Graczykowski, Lukasz
    Glinka, Michal
    INFORMATION TECHNOLOGY, SYSTEMS RESEARCH, AND COMPUTATIONAL PHYSICS, 2020, 945 : 3 - 17