Symmetric shift-invariant subspaces and harmonic maps

被引:0
|
作者
Aleman, Alexandru [1 ]
Pacheco, Rui [2 ]
Wood, John C. [3 ]
机构
[1] Lund Univ, Fac Sci, Math, POB 118, S-22100 Lund, Sweden
[2] Univ Beira Interior, Ctr Matemat & Aplicacoes CMA UBI, P-6201001 Covilha, Portugal
[3] Univ Leeds, Sch Math, GB, Leeds LS2 9JT, W Yorkshire, England
关键词
Harmonic maps; Primitive maps; Flag manifolds; Riemann surfaces; Shift-invariant subspaces; TORI;
D O I
10.1007/s00209-020-02680-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Grassmannian model represents harmonic maps from Riemann surfaces by families of shift-invariant subspaces of a Hilbert space. We impose a natural symmetry condition on the shift-invariant subspaces that corresponds to considering an important class of harmonic maps into symmetric and k-symmetric spaces. Using an appropriate description of such symmetric shift-invariant subspaces we obtain new results for the corresponding extended solutions, including how to obtain primitive harmonic maps from certain harmonic maps into the unitary group.
引用
收藏
页码:183 / 202
页数:20
相关论文
共 50 条
  • [41] FRAMES AND STABLE BASES FOR SHIFT-INVARIANT SUBSPACES OF L(2)(R(D))
    RON, A
    SHEN, ZW
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (05): : 1051 - 1094
  • [42] Random Average Sampling and Reconstruction in Shift-Invariant Subspaces of Mixed Lebesgue Spaces
    Arati, S.
    Devaraj, P.
    Garg, Ankush Kumar
    RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [43] Nonuniform sampling in multiply generated shift-invariant subspaces of mixed lebesgue spaces
    Xing, Nan
    IAENG International Journal of Applied Mathematics, 2020, 50 (03) : 584 - 588
  • [44] On the density order of the principal shift-invariant subspaces of L2(Rd)
    San Antolin, A.
    JOURNAL OF APPROXIMATION THEORY, 2012, 164 (08) : 1007 - 1025
  • [45] Random Average Sampling and Reconstruction in Shift-Invariant Subspaces of Mixed Lebesgue Spaces
    S. Arati
    P. Devaraj
    Ankush Kumar Garg
    Results in Mathematics, 2022, 77
  • [46] ON THE STRUCTURE OF SHIFT-INVARIANT SUBSPACES OF L(2)(T-2,MU)
    CHENG, R
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) : 1307 - 1317
  • [47] Average sampling in shift invariant subspaces with symmetric averaging functions
    Sun, WC
    Zhou, XW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 287 (01) : 279 - 295
  • [48] ON SHIFT-INVARIANT OPERATORS
    SHTEINBERG, AM
    RUSSIAN MATHEMATICAL SURVEYS, 1984, 39 (03) : 215 - 216
  • [49] Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
    Yang, Jiyan
    Sindhwani, Vikas
    Avron, Haim
    Mahoney, Michael W.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [50] Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
    Avron, Haim
    Sindhwani, Vikas
    Yang, Jiyan
    Mahoney, Michael W.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17