Symmetric shift-invariant subspaces and harmonic maps

被引:0
|
作者
Aleman, Alexandru [1 ]
Pacheco, Rui [2 ]
Wood, John C. [3 ]
机构
[1] Lund Univ, Fac Sci, Math, POB 118, S-22100 Lund, Sweden
[2] Univ Beira Interior, Ctr Matemat & Aplicacoes CMA UBI, P-6201001 Covilha, Portugal
[3] Univ Leeds, Sch Math, GB, Leeds LS2 9JT, W Yorkshire, England
关键词
Harmonic maps; Primitive maps; Flag manifolds; Riemann surfaces; Shift-invariant subspaces; TORI;
D O I
10.1007/s00209-020-02680-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Grassmannian model represents harmonic maps from Riemann surfaces by families of shift-invariant subspaces of a Hilbert space. We impose a natural symmetry condition on the shift-invariant subspaces that corresponds to considering an important class of harmonic maps into symmetric and k-symmetric spaces. Using an appropriate description of such symmetric shift-invariant subspaces we obtain new results for the corresponding extended solutions, including how to obtain primitive harmonic maps from certain harmonic maps into the unitary group.
引用
收藏
页码:183 / 202
页数:20
相关论文
共 50 条