Microstructure Control in 3D Printing with Digital Light Processing

被引:48
|
作者
Luongo, A. [1 ]
Falster, V. [2 ]
Doest, M. B. [2 ]
Ribo, M. M. [1 ]
Eiriksson, E. R. [2 ]
Pedersen, D. B. [1 ]
Frisvad, J. R. [2 ]
机构
[1] Tech Univ Denmark, Dept Mech Engn, Lyngby, Denmark
[2] Tech Univ Denmark, Dept Appl Math & Comp Sci, Lyngby, Denmark
关键词
3D printing; additive manufacturing; appearance; BRDF; fabrication; reflectance; surface roughness; center dot Computing methodologies -> Reflectance modelling; CURE DEPTH; SURFACE;
D O I
10.1111/cgf.13807
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Digital light processing stereolithography is a promising technique for 3D printing. However, it offers little control over the surface appearance of the printed object. The printing process is typically layered, which leads to aliasing artefacts that affect surface appearance. An antialiasing option is to use greyscale pixel values in the layer images that we supply to the printer. This enables a kind of subvoxel growth control. We explore this concept and use it for editing surface microstructure. In other words, we modify the surface appearance of a printed object by applying a greyscale pattern to the surface voxels before sending the cross-sectional layer images to the printer. We find that a smooth noise function is an excellent tool for varying surface roughness and for breaking the regularities that lead to aliasing. Conversely, we also present examples that introduce regularities to produce controlled anisotropic surface appearance. Our hope is that subvoxel growth control in stereolithography can lead 3D printing towards customizable surface appearance. The printing process adds what we call ground noise to the printed result. We suggest a way of modelling this ground noise to provide users with a tool for estimating a printer's ability to control surface reflectance.
引用
收藏
页码:347 / 359
页数:13
相关论文
共 50 条
  • [21] Silk fibroin microneedles fabricated by digital light processing 3D printing
    Shin, Donghyeok
    Hyun, Jinho
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 95 : 126 - 133
  • [22] Piezoelectric microphone via a digital light processing 3D printing process
    Tiller, Benjamin
    Reid, Andrew
    Zhu, Botong
    Guerreiro, Jose
    Domingo-Roca, Roger
    Jackson, Joseph Curt
    Windmill, J. F. C.
    MATERIALS & DESIGN, 2019, 165
  • [23] Engineering materials with light: recent progress in digital light processing based 3D printing
    Zhao, Zhi
    Tian, Xiaoxiao
    Song, Xiaoyan
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (40) : 13896 - 13917
  • [24] Digital Light Processing 3D Printing of Soft Semicrystalline Acrylates with Localized Shape Memory and Stiffness Control
    Rylski, Adrian K.
    Maraliga, Tejas
    Wu, Yudian
    Recker, Elizabeth A.
    Arrowood, Anthony J.
    Sanoja, Gabriel E.
    Page, Zachariah A.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (28) : 34097 - 34107
  • [25] Digital light processing based multimaterial 3D printing: challenges, solutions and perspectives
    Cheng, Jianxiang
    Yu, Shouyi
    Wang, Rong
    Ge, Qi
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (04)
  • [26] Digital light processing 3D printing of molecularly imprinted polymers for antibiotic removal
    Camilli, Elena
    Bertana, Valentina
    Frascella, Francesca
    Cocuzza, Matteo
    Marasso, Simone Luigi
    Roppolo, Ignazio
    REACTIVE & FUNCTIONAL POLYMERS, 2025, 208
  • [27] Digital Light Processing 3D Printing of Enhanced Polymers via Interlayer Welding
    Zhu, Guangda
    Hou, Yi
    Xu, Jian
    Zhao, Ning
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (09)
  • [28] High-resolution metal 3D printing via digital light processing
    Melentiev, Ruslan
    Harakaly, Gyorgy
    Stogerer, Johannes
    Mitteramskogler, Gerald
    Wagih, A.
    Lubineau, Gilles
    Grande, Carlos A.
    ADDITIVE MANUFACTURING, 2024, 85
  • [29] A reaction-diffusion model for grayscale digital light processing 3D printing
    Montgomery, S. Macrae
    Hamel, Craig M.
    Skovran, Jacob
    Qi, H. Jerry
    EXTREME MECHANICS LETTERS, 2022, 53
  • [30] Photocurable elastomers with tunable mechanical properties for 3D digital light processing printing
    Pooput, Kannaporn
    Channasanon, Somruethai
    Tesavibul, Passakorn
    Pittayavinai, Pitchapa
    Taweelue, Wirun
    JOURNAL OF POLYMER RESEARCH, 2020, 27 (10)