Digital Light Processing 3D Printing of Soft Semicrystalline Acrylates with Localized Shape Memory and Stiffness Control

被引:10
|
作者
Rylski, Adrian K. [1 ]
Maraliga, Tejas [2 ]
Wu, Yudian [1 ]
Recker, Elizabeth A. [2 ]
Arrowood, Anthony J. [2 ]
Sanoja, Gabriel E. [2 ]
Page, Zachariah A. [1 ]
机构
[1] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[2] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
semicrystalline polymer; 3D printing; shapememory; multimaterial; photopolymerization; POLYMER; RECOVERY; STRESS;
D O I
10.1021/acsami.3c07172
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multimaterial three-dimensional (3D) printing of objectswith spatiallytunable thermomechanical properties and shape-memory behavior providesan attractive approach toward programmable "smart" plasticswith applications in soft robotics and electronics. To date, digitallight processing 3D printing has emerged as one of the fastest manufacturingmethods that maintains high precision and resolution. Despite thecommon utility of semicrystalline polymers in stimuli-responsive materials,few reports exist whereby such polymers have been produced via digitallight processing (DLP) 3D printing. Herein, two commodity long-alkylchain acrylates (C-18, stearyl and C-12, lauryl)and mixtures therefrom are systematically examined as neat resin componentsfor DLP 3D printing of semicrystalline polymer networks. Tailoringthe stearyl/lauryl acrylate ratio results in a wide breadth of thermomechanicalproperties, including tensile stiffness spanning three orders of magnitudeand temperatures from below room temperature (2 & DEG;C) to abovebody temperature (50 & DEG;C). This breadth is attributed primarilyto changes in the degree of crystallinity. Favorably, the relationshipbetween resin composition and the degree of crystallinity is quadratic,making the thermomechanical properties reproducible and easily programmable.Furthermore, the shape-memory behavior of 3D-printed objects uponthermal cycling is characterized, showing good fatigue resistanceand work output. Finally, multimaterial 3D-printed structures withvertical gradation in composition are demonstrated where concomitantlocalization of thermomechanical properties enables multistage shape-memoryand strain-selective behavior. The present platform represents a promisingroute toward customizable actuators for biomedical applications.
引用
收藏
页码:34097 / 34107
页数:11
相关论文
共 50 条
  • [1] Shape Memory Polymer-based Stiffness Variable Soft Actuator Via Digital Light Processing-based 3D Printing
    Wei, Xinfeng
    Li, Honggeng
    He, Xiangnan
    Li, Zhenqing
    Ye, Haitao
    Xue, Wenbo
    Ge, Qi
    2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2021,
  • [2] Digital Light Processing 3D Printing of Triple Shape Memory Polymer for Sequential Shape Shifting
    Peng, Bangan
    Yang, Yunchong
    Gu, Kai
    Amis, Eric J.
    Cavicchi, Kevin A.
    ACS MATERIALS LETTERS, 2019, 1 (04): : 410 - 417
  • [3] Microstructure Control in 3D Printing with Digital Light Processing
    Luongo, A.
    Falster, V.
    Doest, M. B.
    Ribo, M. M.
    Eiriksson, E. R.
    Pedersen, D. B.
    Frisvad, J. R.
    COMPUTER GRAPHICS FORUM, 2020, 39 (01) : 347 - 359
  • [4] Design and Applications of Soft Actuators Based on Digital Light Processing (DLP) 3D Printing
    Wan, Jingjing
    Sun, Lechen
    Du, Tianhao
    IEEE ACCESS, 2023, 11 : 86227 - 86242
  • [5] 3D gradient printing based on digital light processing
    Wang, Han
    Xia, Yu
    Zhang, Zixuan
    Xie, Zhuoying
    JOURNAL OF MATERIALS CHEMISTRY B, 2023, 11 (37) : 8883 - 8896
  • [6] Digital light processing 3D printing of hydrogels: a minireview
    Ding, Hongyao
    Dong, Min
    Zheng, Qiang
    Wu, Zi Liang
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2022, 7 (09) : 1017 - 1029
  • [7] Reprintable Polymers for Digital Light Processing 3D Printing
    Zhu, Guangda
    Hou, Yi
    Xu, Jian
    Zhao, Ning
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (09)
  • [8] A Scalable Digital Light Processing 3D Printing Method
    Huang, Junjie
    Cai, Jiangkun
    Huangfu, Chenhao
    Li, Shikai
    Chen, Guoqiang
    Yun, Hao
    Xiao, Junfeng
    MICROMACHINES, 2024, 15 (11)
  • [9] Simulating an Intelligent Printing Control for a Digital Light Processing (DLP) 3D Printer
    Lin, Yu-Sheng
    Lin, Ying-Zhao
    Zhang, Yu-Yao
    Yang, Cheng-Jung
    PROCEEDINGS OF 4TH IEEE INTERNATIONAL CONFERENCE ON APPLIED SYSTEM INNOVATION 2018 ( IEEE ICASI 2018 ), 2018, : 429 - 432
  • [10] "Invisible" Digital Light Processing 3D Printing with Near Infrared Light
    Stevens, Lynn M.
    Tagnon, Clotilde
    Page, Zachariah A.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (20) : 22912 - 22920