THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS

被引:10
|
作者
Kierstead, Hal [1 ]
Mohar, Bojan [2 ]
Spacapan, Simon [3 ]
Yang, Daqing [4 ]
Zhu, Xuding [5 ,6 ]
机构
[1] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Univ Maribor, FME, SLO-2000 Maribor, Slovenia
[4] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
[5] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[6] Natl Taiwan Univ, Natl Ctr Theoret Sci, Taipei 10617, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
two-coloring number; degenerate coloring; planar graph; GAME; TRIANGULATIONS;
D O I
10.1137/070703697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The two-coloring number of graphs, which was originally introduced in the study of the game chromatic number, also gives an upper bound on the degenerate chromatic number as introduced by Borodin. It is proved that the two-coloring number of any planar graph is at most nine. As a consequence, the degenerate list chromatic number of any planar graph is at most nine. It is also shown that the degenerate diagonal chromatic number is at most 11 and the degenerate diagonal list chromatic number is at most 12 for all planar graphs.
引用
收藏
页码:1548 / 1560
页数:13
相关论文
共 50 条
  • [41] COLORINGS OF PLANAR GRAPHS .2.
    PRESIA, HJ
    MATHEMATISCHE NACHRICHTEN, 1975, 67 : 181 - 198
  • [42] List injective colorings of planar graphs
    Borodin, O. V.
    Ivanova, A. O.
    DISCRETE MATHEMATICS, 2011, 311 (2-3) : 154 - 165
  • [43] The slow-coloring game on sparse graphs: k-degenerate, planar, and outerplanar
    Gutowski, Grzegorz
    Krawczyk, Tomasz
    Maziarz, Krzysztof
    West, Douglas B.
    Zajac, Michal
    Zhu, Xuding
    JOURNAL OF COMBINATORICS, 2021, 12 (02) : 283 - 302
  • [44] Acyclic colorings of locally planar graphs
    Mohar, B
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (3-4) : 491 - 503
  • [45] ON THE TOTAL COLORING OF PLANAR GRAPHS
    BORODIN, OV
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 394 : 180 - 185
  • [46] Coloring powers of planar graphs
    Agnarsson, G
    Halldórsson, MM
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 654 - 662
  • [47] Additive Coloring of Planar Graphs
    Bartnicki, Tomasz
    Bosek, Bartlomiej
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Matecki, Grzegorz
    Zelazny, Wiktor
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1087 - 1098
  • [48] COLORING PLANAR GRAPHS IN PARALLEL
    BOYAR, JF
    KARLOFF, HJ
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1987, 8 (04): : 470 - 479
  • [49] Additive Coloring of Planar Graphs
    Tomasz Bartnicki
    Bartłomiej Bosek
    Sebastian Czerwiński
    Jarosław Grytczuk
    Grzegorz Matecki
    Wiktor Żelazny
    Graphs and Combinatorics, 2014, 30 : 1087 - 1098
  • [50] Injective coloring of planar graphs
    Yuehua, Bu
    Chentao, Qi
    Junlei, Zhu
    Ting, Xu
    THEORETICAL COMPUTER SCIENCE, 2021, 857 : 114 - 122