THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS

被引:10
|
作者
Kierstead, Hal [1 ]
Mohar, Bojan [2 ]
Spacapan, Simon [3 ]
Yang, Daqing [4 ]
Zhu, Xuding [5 ,6 ]
机构
[1] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Univ Maribor, FME, SLO-2000 Maribor, Slovenia
[4] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
[5] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[6] Natl Taiwan Univ, Natl Ctr Theoret Sci, Taipei 10617, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
two-coloring number; degenerate coloring; planar graph; GAME; TRIANGULATIONS;
D O I
10.1137/070703697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The two-coloring number of graphs, which was originally introduced in the study of the game chromatic number, also gives an upper bound on the degenerate chromatic number as introduced by Borodin. It is proved that the two-coloring number of any planar graph is at most nine. As a consequence, the degenerate list chromatic number of any planar graph is at most nine. It is also shown that the degenerate diagonal chromatic number is at most 11 and the degenerate diagonal list chromatic number is at most 12 for all planar graphs.
引用
收藏
页码:1548 / 1560
页数:13
相关论文
共 50 条
  • [21] Coloring perfect degenerate graphs
    Haddadene, HA
    Maffray, F
    DISCRETE MATHEMATICS, 1997, 163 (1-3) : 211 - 215
  • [22] LIST COLORINGS OF PLANAR GRAPHS
    VOIGT, M
    DISCRETE MATHEMATICS, 1993, 120 (1-3) : 215 - 219
  • [23] Extending Colorings of Planar Graphs
    Weihua Lu
    Han Ren
    Graphs and Combinatorics, 2019, 35 : 1161 - 1167
  • [24] ACYCLIC COLORINGS OF PLANAR GRAPHS
    GRUNBAUM, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A816 - A816
  • [25] On odd colorings of planar graphs
    Miao, Zhengke
    Sun, Lin
    Tu, Zhuojie
    Yu, Xiaowei
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [26] ACYCLIC COLORINGS OF PLANAR GRAPHS
    BORODIN, OV
    DISCRETE MATHEMATICS, 1979, 25 (03) : 211 - 236
  • [27] Extending Colorings of Planar Graphs
    Lu, Weihua
    Ren, Han
    GRAPHS AND COMBINATORICS, 2019, 35 (05) : 1161 - 1167
  • [28] Complete colorings of planar graphs
    Araujo-Pardo, G.
    Contreras-Mendoza, F. E.
    Murillo-Garcia, S. J.
    Ramos-Tort, A. B.
    Rubio-Montiel, C.
    DISCRETE APPLIED MATHEMATICS, 2019, 255 : 86 - 97
  • [29] Incidence coloring numbers of two classes of planar graphs
    Department of Mathematics, Tongji University, Shanghai 200092, China
    不详
    不详
    Tongji Daxue Xuebao, 2008, 3 (392-396):
  • [30] Coloring the square of maximal planar graphs with diameter two
    Wang, Yiqiao
    Huo, Jingjing
    Kong, Jiangxu
    Tan, Qiuyue
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 459