A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images

被引:78
|
作者
Kim, Byeongjoon [1 ,2 ]
Han, Minah [1 ,2 ]
Shim, Hyunjung [1 ,2 ]
Baek, Jongduk [1 ,2 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, Incheon 21983, South Korea
[2] Yonsei Univ, Yonsei Inst Convergence Technol, Incheon 21983, South Korea
基金
新加坡国家研究基金会;
关键词
adversarial loss; deep learning; feature-level loss; image denoising; low-dose CT; mathematical observer; modulation transfer function; noise power spectrum; NOISE; FRAMELETS; OBSERVER; SPECTRUM;
D O I
10.1002/mp.13713
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Convolutional neural network (CNN)-based image denoising techniques have shown promising results in low-dose CT denoising. However, CNN often introduces blurring in denoised images when trained with a widely used pixel-level loss function. Perceptual loss and adversarial loss have been proposed recently to further improve the image denoising performance. In this paper, we investigate the effect of different loss functions on image denoising performance using task-based image quality assessment methods for various signals and dose levels. Methods We used a modified version of U-net that was effective at reducing the correlated noise in CT images. The loss functions used for comparison were two pixel-level losses (i.e., the mean-squared error and the mean absolute error), Visual Geometry Group network-based perceptual loss (VGG loss), adversarial loss used to train the Wasserstein generative adversarial network with gradient penalty (WGAN-GP), and their weighted summation. Each image denoising method was applied to reconstructed images and sinogram images independently and validated using the extended cardiac-torso (XCAT) simulation and Mayo Clinic datasets. In the XCAT simulation, we generated fan-beam CT datasets with four different dose levels (25%, 50%, 75%, and 100% of a normal-dose level) using 10 XCAT phantoms and inserted signals in a test set. The signals had two different shapes (spherical and spiculated), sizes (4 and 12 mm), and contrast levels (60 and 160 HU). To evaluate signal detectability, we used a detection task SNR (tSNR) calculated from a non-prewhitening model observer with an eye filter. We also measured the noise power spectrum (NPS) and modulation transfer function (MTF) to compare the noise and signal transfer properties. Results Compared to CNNs without VGG loss, VGG-loss-based CNNs achieved a more similar tSNR to that of the normal-dose CT for all signals at different dose levels except for a small signal at the 25% dose level. For a low-contrast signal at 25% or 50% dose, adding other losses to the VGG loss showed more improved performance than only using VGG loss. The NPS shapes from VGG-loss-based CNN closely matched that of normal-dose CT images while CNN without VGG loss overly reduced the mid-high-frequency noise power at all dose levels. MTF also showed VGG-loss-based CNN with better-preserved high resolution for all dose and contrast levels. It is also observed that additional WGAN-GP loss helps improve the noise and signal transfer properties of VGG-loss-based CNN. Conclusions The evaluation results using tSNR, NPS, and MTF indicate that VGG-loss-based CNNs are more effective than those without VGG loss for natural denoising of low-dose images and WGAN-GP loss improves the denoising performance of VGG-loss-based CNNs, which corresponds with the qualitative evaluation.
引用
收藏
页码:3906 / 3923
页数:18
相关论文
共 50 条
  • [31] Low-dose CT reconstruction with simultaneous sinogram and image domain denoising by deep neural network
    Zhu, Jiongtao
    Su, Ting
    Deng, Xiaolei
    Sun, Xindong
    Zheng, Hairong
    Liang, Dong
    Ge, Yongshuai
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312
  • [32] Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network
    Li, Qing
    Li, Runrui
    Li, Saize
    Wang, Tao
    Cheng, Yubin
    Zhang, Shuming
    Wu, Wei
    Zhao, Juanjuan
    Qiang, Yan
    Wang, Long
    MEDICAL PHYSICS, 2024, 51 (02) : 1289 - 1312
  • [33] Cascaded Convolutional Neural Networks with Perceptual Loss for Low Dose CT Denoising
    Ataei, Sepehr
    Alirezaie, Javad
    Babyn, Paul
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [34] Low-dose CT image denoising without high-dose reference images
    Yuan, Nimu
    Zhou, Jian
    Qi, Jinyi
    15TH INTERNATIONAL MEETING ON FULLY THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN RADIOLOGY AND NUCLEAR MEDICINE, 2019, 11072
  • [35] Improving Low-Dose Cone Beam CT Image Quality Via Convolutional Neural Network
    Yuan, N.
    Rao, S.
    Dyer, B.
    Benedict, S.
    Kang, Y.
    Qi, J.
    Rong, Y.
    MEDICAL PHYSICS, 2019, 46 (06) : E221 - E221
  • [36] Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss
    Yang, Qingsong
    Yan, Pingkun
    Zhang, Yanbo
    Yu, Hengyong
    Shi, Yongyi
    Mou, Xuanqin
    Kalra, Mannudeep K.
    Zhang, Yi
    Sun, Ling
    Wang, Ge
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) : 1348 - 1357
  • [37] A Review of deep learning methods for denoising of medical low-dose CT images
    Zhang, Ju
    Gong, Weiwei
    Ye, Lieli
    Wang, Fanghong
    Shangguan, Zhibo
    Cheng, Yun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
  • [38] A Review of deep learning methods for denoising of medical low-dose CT images
    Zhang, Ju
    Gong, Weiwei
    Ye, Lieli
    Wang, Fanghong
    Shangguan, Zhibo
    Cheng, Yun
    Computers in Biology and Medicine, 171
  • [39] Low-Dose CT Image Denoising with Improving WGAN and Hybrid Loss Function
    Li, Zhihua
    Shi, Weili
    Xing, Qiwei
    Miao, Yu
    He, Wei
    Yang, Huamin
    Jiang, Zhengang
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [40] Improving Low-Dose CT Image Using Residual Convolutional Network
    Yang, Wei
    Zhang, Huijuan
    Yang, Jian
    Wu, Jiasong
    Yin, Xiangrui
    Chen, Yang
    Shu, Huazhong
    Luo, Limin
    Coatrieux, Gouenou
    Gui, Zhiguo
    Feng, Qianjin
    IEEE ACCESS, 2017, 5 : 24698 - 24705