Estimation of parameters of kinetic compartmental models by use of computational neural networks

被引:15
|
作者
Ventura, S
Silva, M
PerezBendito, D
Hervas, C
机构
[1] UNIV CORDOBA,FAC SCI,DEPT ANALYT CHEM,E-14004 CORDOBA,SPAIN
[2] UNIV CORDOBA,DEPT MATH & COMP SCI,E-14004 CORDOBA,SPAIN
来源
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES | 1997年 / 37卷 / 03期
关键词
D O I
10.1021/ci960143y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel methodological approach to the estimation of parameters involved in multicomponent kinetic determinations from real kinetic data by use of computational or artificial neural networks (ANNs) is proposed. The ANN input data used are also estimates obtained by using the Levenberg-Marquardt method in the form of an approximate nonlinear function that is the sum of the two expressions associated with the pseudo-first-order kinetics of the two mixture components. The performance of the optimized network architecture, 2:4s:21, was tested at variable rate constant ratios. The reduced dimensions of the network input space obtained using the Kolmogorov-Sprecher theorem result in improved limits of precision in estimating parameters at near-unity rate constant ratios. Experiments with real kinetic data provided a relative standard error of prediction of 2.47% and 4.23% for the two mixture components. These errors are much smaller than those obtained with existing alternative methods, particularly at the low rate constant ratio involved (1.37).
引用
收藏
页码:517 / 521
页数:5
相关论文
共 50 条
  • [31] An analytical solution of the compartmental model for use in local learning in artificial neural networks
    Hoekstra, J
    Maouli, M
    FROM NATURAL TO ARTIFICIAL NEURAL COMPUTATION, 1995, 930 : 45 - 52
  • [32] Estimation of Stokes Parameters Using Deep Neural Networks
    Manuel Raygoza-Romero, Joan
    Hussein Lopez-Nava, Irvin
    Cesar Ramirez-Velez, Julio
    PATTERN RECOGNITION, MCPR 2023, 2023, 13902 : 159 - 168
  • [33] Parameters Estimation Directly from Sinograms with Neural Networks
    Chang, Haoran
    Mitra, Debasis
    Shrestha, Uttam
    Gullberg, Grant T.
    Seo, Youngho
    2019 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2019,
  • [34] Estimation of wastewater process parameters using neural networks
    Hack, M
    Kohne, M
    WATER SCIENCE AND TECHNOLOGY, 1996, 33 (01) : 101 - 115
  • [35] Probabilistic Estimation of Parameters for Lubrication Application with Neural Networks
    Paschek, Stefan
    Foerster, Frederic
    Kipfmueller, Martin
    Heizmann, Michael
    ENG, 2024, 5 (04): : 2428 - 2440
  • [36] Estimation of seismic waveform governing parameters with neural networks
    Langer, H
    Nunnari, G
    Occhipinti, L
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1996, 101 (B9) : 20109 - 20118
  • [37] Adaptive neural networks for robust estimation of signal parameters
    Lobos, T
    Kostyla, P
    Waclawek, Z
    Cichocki, A
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2000, 19 (03) : 903 - 912
  • [38] Estimation of K distribution parameters using neural networks
    Wachowiak, MP
    Smolíková, R
    Zurada, JM
    Elmaghraby, AS
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (06) : 617 - 620
  • [39] On the use of computational neural networks for the prediction of polymer properties
    Sumpter, BG
    Noid, DW
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1996, 46 (3-4) : 833 - 851
  • [40] A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models
    Park, TY
    Froment, GF
    COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 : S103 - S110