Estimation of parameters of kinetic compartmental models by use of computational neural networks

被引:15
|
作者
Ventura, S
Silva, M
PerezBendito, D
Hervas, C
机构
[1] UNIV CORDOBA,FAC SCI,DEPT ANALYT CHEM,E-14004 CORDOBA,SPAIN
[2] UNIV CORDOBA,DEPT MATH & COMP SCI,E-14004 CORDOBA,SPAIN
来源
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES | 1997年 / 37卷 / 03期
关键词
D O I
10.1021/ci960143y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel methodological approach to the estimation of parameters involved in multicomponent kinetic determinations from real kinetic data by use of computational or artificial neural networks (ANNs) is proposed. The ANN input data used are also estimates obtained by using the Levenberg-Marquardt method in the form of an approximate nonlinear function that is the sum of the two expressions associated with the pseudo-first-order kinetics of the two mixture components. The performance of the optimized network architecture, 2:4s:21, was tested at variable rate constant ratios. The reduced dimensions of the network input space obtained using the Kolmogorov-Sprecher theorem result in improved limits of precision in estimating parameters at near-unity rate constant ratios. Experiments with real kinetic data provided a relative standard error of prediction of 2.47% and 4.23% for the two mixture components. These errors are much smaller than those obtained with existing alternative methods, particularly at the low rate constant ratio involved (1.37).
引用
收藏
页码:517 / 521
页数:5
相关论文
共 50 条
  • [21] Online estimation of the state and parameters in compartmental models using extended Kalman filter
    Özbek, L
    Efe, M
    NONLINEAR DYNAMICS IN THE LIFE AND SOCIAL SCIENCES, 2001, 320 : 262 - 271
  • [22] Blind estimation of compartmental model parameters
    Di Bella, EVR
    Clackdoyle, R
    Gullberg, GT
    PHYSICS IN MEDICINE AND BIOLOGY, 1999, 44 (03): : 765 - 780
  • [23] Evolutionary Estimation of Parameters in Computational Models of Thymocyte Dynamics
    Moatar-Moleriu, Lavinia
    Negru, Viorel
    Zaharie, Daniela
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2013, 2014, 8353 : 272 - 280
  • [24] COMPARTMENTAL MODELING WITH ARTIFICIAL NEURAL NETWORKS
    COOMBER, CJ
    NEURAL PROCESSING LETTERS, 1995, 2 (01) : 13 - 18
  • [25] Persistence and stability of a class of kinetic compartmental models
    Gábor Szederkényi
    Bernadett Ács
    György Lipták
    Mihály A. Vághy
    Journal of Mathematical Chemistry, 2022, 60 : 1001 - 1020
  • [26] The pseudophase and compartmental kinetic models of photoreactions in micelles
    Soboleva, IV
    Kuz'min, MG
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2000, 74 (10): : 1569 - 1578
  • [27] Evaluation of simplified compartmental models of reconstructed neocortical neurons for use in large-scale simulations of biological neural networks
    Jackson, ME
    Cauller, LJ
    BRAIN RESEARCH BULLETIN, 1997, 44 (01) : 7 - 17
  • [28] Persistence and stability of a class of kinetic compartmental models
    Szederkenyi, Gabor
    Acs, Bernadett
    Liptak, Gyorgy
    Vaghy, Mihaly A.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 60 (06) : 1001 - 1020
  • [29] Neural networks for parameter estimation in intractable models
    Lenzi, Amanda
    Bessac, Julie
    Rudi, Johann
    Stein, Michael L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 185
  • [30] Computational Models and Emergent Properties of Respiratory Neural Networks
    Lindsey, Bruce G.
    Rybak, Ilya A.
    Smith, Jeffrey C.
    COMPREHENSIVE PHYSIOLOGY, 2012, 2 (03) : 1619 - 1670