Thermal conductivity enhancement of form-stable tetradecanol/expanded perlite composite phase change materials by adding Cu powder and carbon fiber for thermal energy storage

被引:121
|
作者
Cheng, Fei [1 ]
Zhang, Xiaoguang [1 ]
Wen, Ruilong [1 ]
Huang, Zhaohui [1 ]
Fang, Minghao [1 ]
Liu, Yan'gai [1 ]
Wu, Xiaowen [1 ]
Min, Xin [1 ]
机构
[1] China Univ Geosci Beijing, Natl Lab Mineral Mat, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
关键词
Phase change materials; Thermal conductivity enhancer; Thermal property; Thermal conductivity; PALMITIC-STEARIC ACID; MIXTURE/EXPANDED GRAPHITE COMPOSITE; ACID/EXPANDED PERLITE; EXPANDED GRAPHITE; PERFORMANCE; VERMICULITE;
D O I
10.1016/j.applthermaleng.2019.03.140
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, form-stable tetradecanol (TD)/expanded perlite (EP) composites by adding Cu powder (CuP) and carbon fiber (CF) to enhance thermal conductivities have been prepared via vacuum impregnation method. The thermal conductivity enhancer (TCE) is introduced by two methods of mixing TCE with phase change materials (PCMs) and implanting TCE into matrix materials. The result demonstrates the former is better than the latter in aspects of thermal property, thermal conductivity and controllability, moreover, adding ratio of TCEs gather in more appropriate interval from 2.5% to 3% suitable for the former. For CPCMs, FT_IR results indicate it is no chemical interaction among raw materials but physical combination via two methods. CPCMs prepared by the method of mixing TCE with PCMs have better phase change latent heat and thermal stability by DSC and TGA, while thermal cycling measurements show that form-stable composite PCMs have adequate stability even after being subjected to 200 melting/freezing cycles. Therefore, the method of mixing TCE with PCMs has better thermal property and controllability than that of implanting TCE into matrix materials and the prepared CPCM has great application prospect in solar energy utilization, building material, indoor cooling instrument and so on for thermal energy storage.t
引用
收藏
页码:653 / 659
页数:7
相关论文
共 50 条
  • [41] A cost-effective form-stable PCM composite with modified paraffin and expanded perlite for thermal energy storage in concrete
    Hasanabadi, Salman
    Sadrameli, Seyed Mojtaba
    Soheili, Hassan
    Moharrami, Hamid
    Heyhat, Mohammad Mahdi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (03) : 1201 - 1216
  • [42] Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride
    Wang, Weilong
    Yang, Xiaoxi
    Fang, Yutang
    Ding, Jing
    Yan, Jinyue
    APPLIED ENERGY, 2009, 86 (7-8) : 1196 - 1200
  • [43] Thermal storage using form-stable phase-change materials
    Syed, MT
    Kumar, S
    Moallemi, MK
    Naraghi, MN
    ASHRAE JOURNAL-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1997, 39 (05): : 45 - 50
  • [44] Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material
    Sari, Ahmet
    Karaipekli, Ali
    Alkan, Cemil
    CHEMICAL ENGINEERING JOURNAL, 2009, 155 (03) : 899 - 904
  • [45] Thermal storage using form-stable phase-change materials
    Syed, M.Tashfeen
    Kumar, Sunil
    Moallemi, M.Karim
    Naraghi, Mehdi N.
    1997, ASHRAE, Atlanta, GA, United States (39)
  • [46] Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage
    Yuan, Mengdi
    Ren, Yunxiu
    Xu, Chao
    Ye, Feng
    Du, Xiaoze
    RENEWABLE ENERGY, 2019, 136 : 211 - 222
  • [47] Lauric acid/bentonite/flake graphite composite as form-stable phase change materials for thermal energy storage
    Liu, Songyang
    Han, Jie
    Gao, Qingjie
    Kang, Wenze
    Ren, Ruichen
    Wang, Lunan
    Chen, Dan
    Wu, Dapeng
    MATERIALS EXPRESS, 2020, 10 (02) : 214 - 224
  • [48] Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage
    Wang, Yi
    Xia, Tian Dong
    Feng, Hui Xia
    Zhang, Han
    RENEWABLE ENERGY, 2011, 36 (06) : 1814 - 1820
  • [49] Fabrication and Thermal Properties of Capric Acid/Calcinated Iron Tailings/Carbon Nanotubes Composite as Form-Stable Phase Change Materials for Thermal Energy Storage
    Liu, Peng
    Gu, Xiaobin
    Zhang, Zhikai
    Shi, Jianping
    Rao, Jun
    Bian, Liang
    MINERALS, 2019, 9 (11)
  • [50] Thermal properties of sodium nitrate-expanded vermiculite form-stable composite phase change materials
    Li, Ruguang
    Zhu, Jiaoqun
    Zhou, Weibing
    Cheng, Xiaomin
    Li, Yuanyuan
    MATERIALS & DESIGN, 2016, 104 : 190 - 196