Thermal conductivity enhancement of form-stable tetradecanol/expanded perlite composite phase change materials by adding Cu powder and carbon fiber for thermal energy storage

被引:121
|
作者
Cheng, Fei [1 ]
Zhang, Xiaoguang [1 ]
Wen, Ruilong [1 ]
Huang, Zhaohui [1 ]
Fang, Minghao [1 ]
Liu, Yan'gai [1 ]
Wu, Xiaowen [1 ]
Min, Xin [1 ]
机构
[1] China Univ Geosci Beijing, Natl Lab Mineral Mat, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
关键词
Phase change materials; Thermal conductivity enhancer; Thermal property; Thermal conductivity; PALMITIC-STEARIC ACID; MIXTURE/EXPANDED GRAPHITE COMPOSITE; ACID/EXPANDED PERLITE; EXPANDED GRAPHITE; PERFORMANCE; VERMICULITE;
D O I
10.1016/j.applthermaleng.2019.03.140
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, form-stable tetradecanol (TD)/expanded perlite (EP) composites by adding Cu powder (CuP) and carbon fiber (CF) to enhance thermal conductivities have been prepared via vacuum impregnation method. The thermal conductivity enhancer (TCE) is introduced by two methods of mixing TCE with phase change materials (PCMs) and implanting TCE into matrix materials. The result demonstrates the former is better than the latter in aspects of thermal property, thermal conductivity and controllability, moreover, adding ratio of TCEs gather in more appropriate interval from 2.5% to 3% suitable for the former. For CPCMs, FT_IR results indicate it is no chemical interaction among raw materials but physical combination via two methods. CPCMs prepared by the method of mixing TCE with PCMs have better phase change latent heat and thermal stability by DSC and TGA, while thermal cycling measurements show that form-stable composite PCMs have adequate stability even after being subjected to 200 melting/freezing cycles. Therefore, the method of mixing TCE with PCMs has better thermal property and controllability than that of implanting TCE into matrix materials and the prepared CPCM has great application prospect in solar energy utilization, building material, indoor cooling instrument and so on for thermal energy storage.t
引用
收藏
页码:653 / 659
页数:7
相关论文
共 50 条
  • [21] Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage
    Karaipekli, Ali
    Sari, Ahmet
    RENEWABLE ENERGY, 2008, 33 (12) : 2599 - 2605
  • [22] Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM
    J. L. Zeng
    Y. Y. Liu
    Z. X. Cao
    J. Zhang
    Z. H. Zhang
    L. X. Sun
    F. Xu
    Journal of Thermal Analysis and Calorimetry, 2008, 91 : 443 - 446
  • [23] Effects of In Situ Porous Carbon Modification on Thermal Energy Storage of Paraffin/Expanded Vermiculite Form-Stable Composite Phase Change Materials
    Zhang, Shaogang
    Chen, Huijing
    Xin, Yixiu
    Zhao, Jiaqing
    Li, Jinhong
    Min, Xin
    Zhang, Xiaoguang
    MATERIALS, 2025, 18 (04)
  • [24] Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM
    Zeng, J. L.
    Liu, Y. Y.
    Cao, Z. X.
    Zhang, J.
    Zhang, Z. H.
    Sun, L. X.
    Xu, F.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2008, 91 (02) : 443 - 446
  • [25] Structures and thermal properties of fatty acid/expanded perlite composites as form-stable phase change materials
    Wei, Ting
    Zheng, Baicun
    Liu, Juan
    Gao, Yanfeng
    Guo, Weihong
    ENERGY AND BUILDINGS, 2014, 68 : 587 - 592
  • [26] Preparation and thermal performance of form-stable expanded graphite/stearic acid composite phase change materials with high thermal conductivity
    Zhai T.
    Li T.
    Wu S.
    Wang R.
    Kexue Tongbao/Chinese Science Bulletin, 2018, 63 (07): : 674 - 683
  • [27] Thermal Properties and Enhanced Thermal Conductivity of Capric Acid/Diatomite/Carbon Nanotube Composites as Form-Stable Phase Change Materials for Thermal Energy Storage
    Liu, Peng
    Gu, Xiaobin
    Bian, Liang
    Cheng, Xiangfeng
    Peng, Lihua
    He, Huichao
    ACS OMEGA, 2019, 4 (02): : 2964 - 2972
  • [28] Eicosane/Polycarbonate composite as form-stable phase change materials for latent heat thermal energy storage
    Wang, Yi
    Xi, TianDong
    Feng, HuiXia
    ADVANCED POLYMER SCIENCE AND ENGINEERING, 2011, 221 : 78 - +
  • [29] Enhanced thermal conductivity of composite phase change materials based on carbon modified expanded perlite
    Li, Runjie
    Zhao, Yajing
    Xia, Boyang
    Dong, Zhensheng
    Xue, Song
    Huo, Xiaotong
    Wu, Xiaowen
    Liu, Yan'gai
    Huang, Zhaohui
    Fang, Minghao
    Min, Xin
    Zhang, Xiaoguang
    Materials Chemistry and Physics, 2021, 261
  • [30] Enhanced thermal conductivity of composite phase change materials based on carbon modified expanded perlite
    Li, Runjie
    Zhao, Yajing
    Xia, Boyang
    Dong, Zhensheng
    Xue, Song
    Huo, Xiaotong
    Wu, Xiaowen
    Liu, Yan'gai
    Huang, Zhaohui
    Fang, Minghao
    Min, Xin
    Zhang, Xiaoguang
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 261