Optimal regression parameter-specific shrinkage by plug-in estimation

被引:0
|
作者
Jung, Yoonsuh [1 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Bias-variance tradeoff; oracle property; shrinkage estimator; sparsity; tuning parameter; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; DIVERGING NUMBER; RIDGE REGRESSION; JAMES-STEIN; LASSO; REGULARIZATION; MODELS;
D O I
10.1080/03610926.2019.1602649
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One benefit of the bias-variance tradeoff is that regression estimators do not have to be strictly unbiased. However, to take full advantage of allowing bias, shrinkage regression estimators require that the appropriate level of bias is chosen carefully. Because the conventional grid search for the shrinkage parameters requires heavy computation, it is practically difficult to incorporate more than two shrinkage parameters. In this paper, we propose a class of shrinkage regression estimators which differently shrink each regression parameter. For this purpose, we set the number of shrinkage parameters to be the same as the number of regression coefficients. The ideal shrinkage for each parameter is suggested, meaning that a burdensome tuning process is not required for each parameter. The -consistency and oracle property of the suggested estimators are established. The application of the proposed methods to simulated and real data sets produces the favorable performance of the suggested regression shrinkage methods without the need for a grid search of the entire parameter space.
引用
收藏
页码:4490 / 4505
页数:16
相关论文
共 50 条
  • [21] Longitudinal Vehicle Dynamics Modeling and Parameter Estimation for Plug-in Hybrid Electric Vehicle
    Buggaveeti S.
    Batra M.
    McPhee J.
    Azad N.
    SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2017, 1 (02): : 289 - 297
  • [22] On the Optimality of Plug-In Optimal Control Systems
    Fujii, Takao
    Osuka, Koichi
    Bando, Mai
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTIST, IMECS 2012, VOL II, 2012, : 952 - 955
  • [23] Instance-specific versus parameter-specific circuit generation
    Rice, JE
    Ronda, T
    Kent, KB
    Yong, Z
    ERSA'05: Proceedings of the 2005 International Conference on Engineering of Reconfigurable Systems and Algorithms, 2005, : 243 - 246
  • [24] A plug-in bandwidth selector for nonparametric quantile regression
    Conde-Amboage, Mercedes
    Sanchez-Sellero, Cesar
    TEST, 2019, 28 (02) : 423 - 450
  • [25] On plug-in estimation of long memory models
    Lieberman, O
    ECONOMETRIC THEORY, 2005, 21 (02) : 431 - 454
  • [26] Robust plug-in bandwidth estimators in nonparametric regression
    Boente, G
    Fraiman, R
    Meloche, J
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 57 (01) : 109 - 142
  • [27] A plug-in bandwidth selector for nonparametric quantile regression
    Mercedes Conde-Amboage
    César Sánchez-Sellero
    TEST, 2019, 28 : 423 - 450
  • [28] Plug-in estimation of general level sets
    Cuevas, A
    González-Manteiga, W
    Rodríguez-Casal, A
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2006, 48 (01) : 7 - 19
  • [29] Optimal Control of a Repowered Vehicle: Plug-in Fuel Cell Against Plug-in Hybrid Electric Powertrain
    Tribioli, L.
    Cozzolino, R.
    Barbieri, M.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [30] Rates of Estimation of Optimal Transport Maps using Plug-in Estimators via Barycentric Projections
    Deb, Nabarun
    Ghosal, Promit
    Sen, Bodhisattva
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34